Skip to main content
Log in

Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A sequential extraction procedure was used to study the changes in the physicochemical forms of americium (Am), thorium (Th), and uranium (U) in laboratory-contaminated Chernozem soil as a result of sharp variations of the environmental temperature and soil moisture. The influence of freezing and soil drought on the radio-ecological hazard was evaluated three months after radioactive contamination with aqueous solutions of 241Am, 234Th, and U. The subsequent changes in the physicochemical forms of the actinides, caused by sharp increases in the environmental temperature and soil moisture, were examined for one month. The data showed that continuous freezing increased the potentially mobile forms of Am and Th but had the opposite effect on U. Prolonged soil drought did not influence the fractionation of Am and Th but led to the redistribution of U between the carbonates and organic matter and caused its immobilisation. The sharp increase in the temperature of the frozen soil caused the immobilisation of Am and Th and increased the potential mobility of U. The warming and enhanced humidity of the dry soil led to the immobilisation of Am and redistribution of U between the soil phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ATSDR (1990). Toxicological profile for thorium. Atlanta, GA, USA: Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.

    Google Scholar 

  • ATSDR (2004). Toxicological profile for americium. Atlanta, GA, USA: U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • Boyle, R.W. (Ed.) (1982). Geochemical prospecting for thorium and uranium deposits (Series: Developments in economic geology, Vol. 16). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Choppin, G. R. (2005). Actinide science: Fundamental and environmental aspects. Journal of Nuclear and Radiochemical Sciences, 6, 1–5.

    CAS  Google Scholar 

  • Degueldre, C., Ulrich, H. J., & Silby, H. (1994). Sorption of 241Am onto montmorillonite, illite and hematite colloids. Radiochimica Acta, 65, 173–179.

    CAS  Google Scholar 

  • Dowdall, M., Standring, W., Shaw, G., & Strand, P. (2008). Will global warming affect soil-to-plant transfer of radionuclides? Journal of Environmental Radioactivity, 99, 1736–1745. DOI: 10.1016/j.jenvrad.2008.06.012.

    Article  CAS  Google Scholar 

  • Fedorov, A. A., & Basistyi, V. P. (1974). Winter freezing and chemical properties of meadow brown soils. Sibirski Vestnik Sel'shokhozyaistvennoi Nauki, 4, 8–12.

    CAS  Google Scholar 

  • Glaus, M. A., Hummel, W., & Van Loon, L. R. (1995). Stability of mixed-ligand complexes of metal ions with humic substances and low molecular weight ligands. Environmental Science and Technology, 29, 2150–2153. DOI: 10.1021/es00008a039.

    Article  CAS  Google Scholar 

  • Hallet, B. (1976). Deposits formed by subglacial precipitation of CaCO3. Geological Society of America Bulletin, 87, 1003–1015. DOI: 10.1130/0016-7606(1976)87〈1003:DFBSPO〉2.0.CO;2.

    Article  CAS  Google Scholar 

  • Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W., & Stingeder, G. J. (2004). Determination of trace elements bound to soil and sediment fractions (IUPAC Technical Report). Pure and Applied Chemistry, 76, 415–442. DOI: 10.1351/pac200476020415.

    Article  CAS  Google Scholar 

  • Koch-Steindl, H., & Pröhl, G. (2001). Considerations on the behaviour of long-lived radionuclides in the soil. Radiation and Environmental Biophysics, 40, 93–104. DOI: 10.1007/s004110100098.

    Article  CAS  Google Scholar 

  • Lehrsch, G. A., Sojka, R. E., Carter, D. L., & Jolley, P. M. (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55, 1401–1406. DOI: 10.2136/sssaj1991.03615995005500050033x.

    Article  Google Scholar 

  • Marion, G. M. (1995). Freeze-thaw processes and soil chemistry. Special report 95-12. Washington, DC, USA: US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory.

    Google Scholar 

  • Marquardt, C. M. (Ed.) (2008). Migration of actinides in the system clay, humic substances, aquifer. Wissenschaftliche Berichte, FZKA 7407. Karlsruhe, Germany: Forschungszentrum Karlsruhe GmbH.

    Google Scholar 

  • Ren, X., Wang, S., Yang, S., & Li, J. (2010). Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. Journal of Radioanalytical and Nuclear Chemistry, 283, 253–259. DOI: 10.1007/s10967-009-0323-0.

    Article  CAS  Google Scholar 

  • Schmitt, A., Glaser, B., Borken, W., & Matzner, E. (2008). Repeated freeze-thaw cycles changed organic matter quality in a temperate forest soil. Journal of Plant Nutrition and Soil Science, 171, 707–718. DOI: 10.1002/jpln.200700334.

    Article  CAS  Google Scholar 

  • Schultz, M. K., Burnett, W. C., & Inn, K. G. W. (1998). Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments. Journal of Environmental Radioactivity, 40, 155–174. DOI: 10.1016/s0265-931x(97)00075-1.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151. DOI: 10.1080/03067319308027619.

    Article  CAS  Google Scholar 

  • Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119, 33–44. DOI: 10.1016/s0269-7491(01)00325-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petya Kovacheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacheva, P., Mitsiev, S. & Djingova, R. Physicochemical fractionation of americium, thorium, and uranium in Chernozem soil after sharp temperature change and soil drought. Chem. Pap. 68, 336–341 (2014). https://doi.org/10.2478/s11696-013-0457-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0457-y

Keywords

Navigation