Skip to main content
Log in

Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanostructured polyaniline (PANI) was synthesised by the oxidation of aniline in a water/ isopropanol (propan-2-ol, IPA) (50 vol. %) mixture, without added acid, using ammonium peroxydisulfate (APS) as an oxidant. Influence of the IPA co-solvent and the reaction time on the molecular structure, morphology and properties of synthesised PANI samples was studied by FTIR, Raman, and UV-VIS spectroscopies, scanning and transmission electron microscopies (SEM and TEM), and conductivity measurements. The course of the reaction was followed by monitoring changes in the temperature and acidity of the reaction medium. The results were compared with those obtained for PANI prepared in water without IPA under the same reaction conditions. The importance of the solvation effects, dielectric constant of the solvent, and the enthalpy of mixing of IPA with water on the course of the polymerisation reaction and on the properties of polymeric products in the water/IPA medium in comparison with those in water was pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chiou, N. R., Lee, L. J., & Epstein, A. J. (2007). Self-assembled polyaniline nanofibers/nanotubes. Chemistry of Materials, 19, 3589–3591. DOI: 10.1021/cm070847v.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2006). MNDO-PM3 study of the early stages of the chemical oxidative polymerization of aniline. Collection of Czechoslovak Chemical Communications, 71, 1407–1426. DOI: 10.1135/cccc20061407.

    Article  Google Scholar 

  • Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008a). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506.

    Article  Google Scholar 

  • Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008b). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI: 10.1016/j.synthmet.2008.01.005.

    Article  Google Scholar 

  • Ćirić-Marjanović, G. Trchová, M., & Stejskal, J. (2008c). The chemical oxidative polymerization of aniline in water: Raman Spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI: 10.1002/jrs.2007.

    Article  Google Scholar 

  • Ćirić-Marjanović, G., Dondur, V., Milojević, M., Mojović, M., Mentus, S., Radulović, A., Vuković, Z., & Stejskal, J. (2009a). Synthesis and characterization of conducting self-assembled polyaniline nanotubes/zeolite nanocomposite. Langmuir, 25, 3122–3131. DOI: 10.1021/la8030396.

    Article  Google Scholar 

  • Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009b). Synthesis and characterization of selfassembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b.

    Article  Google Scholar 

  • Ćirić-Marjanović, G. (2010). Polyaniline nanostructures. In A. Eftekhari (Ed.), Nanostructured conductive polymers (Chapter 2, pp. 19–98). Chichester, UK: Wiley. DOI: 10.1002/9780470661338.ch2.

    Chapter  Google Scholar 

  • de Albuquerque, J. E., Mattoso, L. H. C., Faria, R. M., Masters, J. G., & MacDiarmid, A. G. (2004). Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy. Synthetic Metals, 146, 1–10. DOI: 10.1016/j.synthmet.2004.05.019.

    Article  Google Scholar 

  • de Souza, F. G., Jr., Anzai, T. K., Melo, P. A., Jr., Soares, B. G., Nele, M., & Pinto, J. C. (2008). Influence of reaction media on pressure sensitivity of polyanilines doped with DBSA. Journal of Applied Polymer Science, 107, 2404–2413. DOI: 10.1002/app.27290.

    Article  Google Scholar 

  • Ding, H., Shen, J., Wan, M., & Chen, Z. (2008). Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromolecular Chemistry and Physics, 209, 864–871. DOI: 10.1002/macp.200700624.

    Article  CAS  Google Scholar 

  • Fragata, M., & Bellemare, F. (1982). Dielectric constant dependence of biological oxidation-reduction: 1. A model of polarity-dependent ferrocytochrome c oxidation. Biophysical Chemistry, 15, 111–119. DOI: 10.1016/0301-4622(82)80023-9.

    Article  CAS  Google Scholar 

  • Huang, J., & Kaner, R. B. (2004). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821. DOI: 10.1002/anie.200460616.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2010a). Exploration of the morphological transition phenomenon of polyaniline from microspheres to nanotubes in acid-free aqueous 1-propanol solution in a single polymerization process. Polymer International, 59, 1226–1232 DOI: 10.1002/pi.2852.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2010b). The structure change-induced morphology transition of polyaniline in 1.6-hexanediol aqueous and acid-free solutions: From submicron-spheres to nanofibers. Synthetic Metals, 160, 384–389. DOI: 10.1016/j.synthmet.2009.11.011.

    Article  CAS  Google Scholar 

  • Jaffé, H. H., & Orchin, M. (1965). Theory and applications of ultraviolet spectroscopy. New York, NY, USA: Willey.

    Google Scholar 

  • Kan, J., Lv, R., & Zhang, S. (2004). Effect of ethanol on properties of electrochemically synthesized polyaniline. Synthetic Metals, 145, 37–42. DOI: 10.1016/j.synthmet.2004.04.017.

    Article  CAS  Google Scholar 

  • Kan, J., Zhang, S., & Jing, G. (2006). Effect of ethanol on chemically synthesized polyaniline nanothread. Journal of Applied Polymer Science, 99, 1848–1853. DOI: 10.1002/app.22345.

    Article  CAS  Google Scholar 

  • Kohut-Svelko, N., Reynaud, S., & François, J. (2005). Synthesis and characterization of polyaniline prepared in the presence of nonionic surfactants in an aqueous dispersion. Synthetic Metals, 150, 107–114. DOI: 10.1016/j.synthmet.2004.12.022.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Reynaud, S., Pellerin, V., Trchová, M., Stejskal, J., & Sapurina, I. (2011). Polyaniline prepared in ethylene glycol or glycerol. Polymer, 52, 1900–1907. DOI: 10.1016/j.polymer.2011.02.047.

    Article  CAS  Google Scholar 

  • Laska, J. (2004). Conformations of polyaniline in polymer blends. Journal of Molecular Structure, 701, 13–18. DOI: 10.1016/j.molstruc.2004.05.021.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2009). Polyaniline “nanotube” self-assembly: The stage of granular agglomeration on nanorod templates. Macromolecular Rapid Communications, 30, 1663–1668. DOI: 10.1002/marc.200900244.

    Article  CAS  Google Scholar 

  • Levitt, L. S., & Malinowski, E. R. (1955). Mechanism of organic oxidation in aqueous solution. I. Kinetics of the persulfate oxidation of isopropyl alcohol. Journal of the American Chemical Society, 77, 4517–4521. DOI: 10.1021/ja01622a022.

    Article  CAS  Google Scholar 

  • Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules (pp. 277–290). San Diego, CA, USA: Academic Press.

    Book  Google Scholar 

  • Marjanović, B., Juranić, I., & Ćirić-Marjanović, G. (2011). Revised mechanism of Boyland-Sims oxidation. The Journal of Physical Chemistry A, 115, 3536–3550. DOI: 10.1021/ jp111129t.

    Article  Google Scholar 

  • Morávková, Z., Trchová, M., Tomšík, E., Čechvala, J., & Stejskal, J. (2012). Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI: 10.1016/j.polymdegradstab.2012.05.019.

    Article  Google Scholar 

  • Morávková, Z., Trchová, M., Tomšík, E., & Stejskal, J. 2013). Influence of ethanol on the chain-ordering of carbonised polyaniline. Chemical Papers, 67, 919–932. DOI: 10.2478/s11696-013-0329-5.

    Article  Google Scholar 

  • Neoh, K. G., Pun, M. Y., Kang, E. T., & Tan, K. L. (1995). Polyaniline treated with organic acids: doping characteristics and stability. Synthetic Metals, 73, 209–215. DOI: 10.1016/0379-6779(95)80018-2.

    Article  CAS  Google Scholar 

  • Park, J. G., Lee, S. H., Ryu, J. S., Hong, Y. K., Kim, T. G., & Busnaina, A. A. (2006). Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning. Journal of the Electrochemical Society, 153, G811–G814. DOI: 10.1149/1.2214532.

    Article  CAS  Google Scholar 

  • Ponner, V. (1969). Mischungswärme der Flüssigkeiten. V. Mischungs- und Lösungswärme im System Isopropanol-Wasser bei 0, 35, 55 und 75°C. Vestnik Leningradskogo Universiteta: Fizika i Khimiya, 9, 142–144. (in German)

    Google Scholar 

  • Radoičić, M., Šaponjić, Z., Nedeljković, J., Ćirić-Marjanović, G., & Stejskal, J. (2010). Self-assembled polyaniline nanotubes and nanoribbons/titanium dioxide nanocomposites. Synthetic Metals, 160, 1325–1334. DOI:10.1016/j.synthmet.2010.04.010.

    Article  Google Scholar 

  • Radoičić, M., Šaponjić, Z., Ćirić-Marjanović, G., Konstantinović, Z., Mitrić, M., & Nedeljković, J. (2012). Ferromagnetic polyaniline/TiO2 nanocomposites. Polymer Composites, 33, 1482–1493. DOI: 10.1002/pc.22278.

    Article  Google Scholar 

  • Rakić, A., Bajuk-Bogdanović, D., Mojović, M., Ćirić-Marjanović, G., Milojević-Rakić, M., Mentus, S., Marjanović, B., Trchová, M., & Stejskal, J. (2011). Oxidation of aniline in dopant-free template-free dilute reaction media. Materials Chemistry and Physics, 127, 501–510. DOI: 10.1016/j.matchemphys.2011.02.047.

    Article  Google Scholar 

  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies. New York, NY, USA: Wiley.

    Google Scholar 

  • Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. preparation of a conducting polymer. Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857.

    Article  CAS  Google Scholar 

  • Talrose, V., Yermakov, A. N., Leskin, A. N., Usov, A. A., Goncharova, A. A., Messineva, N. A., Usova, N. V., Efimkina, M. V., & Aristova, E. V. (2011). UV/Visible spectra. In P. J. Linstrom, & W. G. Mallard (Eds.), NIST Chemistry WebBook: NIST Standard Reference Database Number 69. Gaithersburg, MD, USA: National Institute of Standards and Technology.

    Google Scholar 

  • Tomšík, E., Morávková, Z., Stejskal, J., Trchová, M., Šálek, P., Kovářová, J., Zemek, J., Cieslar, M., & Prokeš, J. (2013). Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chemical Papers, 67, 1054–1065. DOI: 10.2478/s11696-013-0348-2.

    Article  Google Scholar 

  • Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. the Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g.

    Article  Google Scholar 

  • Xia, Y., Wiesinger, J. M., MacDiarmid, A. G., & Epstein, A. J. (1995). Camphorsulfonic acid fully doped polyaniline emeraldine salt: Conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chemistry of Materials, 7, 443–445. DOI: 10.1021/cm00051a002.

    Article  CAS  Google Scholar 

  • Yang, D., & Mattes, B. R. (2002). Polyaniline emeraldine base in N-methyl-2-pyrrolidinone containing secondary amine additives: B. Characterization of solutions and thin films. Synthetic Metals, 129, 249–260. DOI: 10.1016/s0379-6779(02)00081-4.

    Article  CAS  Google Scholar 

  • Zhou, S., Wu, T., & Kan, J. (2007). Effect of methanol on morphology of polyaniline. European Polymer Journal, 43, 395–402. DOI: 10.1016/j.eurpolymj.2006.11.011.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Zhang, L., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008). Self-assembled, nanostructured aniline oxidation products: A structural investigation. Macromolecules, 41, 3125–3135. DOI: 10.1021/ma071650r.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662–670. DOI: 10.1021/ma902109r.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Ćirić-Marjanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakić, A.A., Vukomanović, M. & Ćirić-Marjanović, G. Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/isopropanol mixture. Chem. Pap. 68, 372–383 (2014). https://doi.org/10.2478/s11696-013-0453-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0453-2

Keywords

Navigation