Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 223–232 | Cite as

Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea

  • L. Jaideva Singh
  • R. K. Hemakumar SinghEmail author
Original Paper

Abstract

Three new solid lanthanide(III) complexes, [Ln(1-AMUH)3] · (NO3)3 (1-AMUH = 1-amidino-O-methylurea; Ln = Eu(III), Gd(III), or Tb(III)) were synthesised and characterised by elemental analysis, infrared spectra, magnetic moment measurement, and electron paramagnetic resonance (EPR) spectra for Gd(III) complex. The formation of lanthanide(III) complexes is confirmed by the spectroscopic studies. The photophysical properties of Gd(III), Eu(III), and Tb(III) complexes in solid state were investigated. The Tb(III) complex exhibits the strongest green emission at 543 nm and the Eu(III) complex shows a red emission at 615 nm while the Gd(III) complex shows a weak emission band at 303 nm. Under excitation with UV light, these complexes exhibited an emission characteristic of central metal ions. The powder EPR spectrum of the Gd(III) complex at 300 K exhibits a single broad band with g = 2.025. The bi-exponential nature of the decay lifetime curve is observed in the Eu(III) and Tb(III) complexes. The results reveal them to have potential as luminescent materials.

Keywords

lanthanide complexes luminescence decay lifetime 1-amidino-O-methylurea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, R. K., & Gupta, S. K. (1987). Spectral and thermal investigations in lanthanum(III) and lanthanide (III) complexes of 5,6-benzoquinoline. Polish Journal of Chemistry, 61, 341–354.Google Scholar
  2. Aime, S., Botta, M., Fasano, M., Crich, S. G., & Terreno, E. (1996). Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin. Journal of Biological Inorganic Chemistry, 1, 312–319. DOI: 10.1007/s007750050059.CrossRefGoogle Scholar
  3. Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109, 4283–4374. DOI: 10.1021/cr8003983.CrossRefGoogle Scholar
  4. Binnemans, K., & Görller-Walrand, C. (2002). Lanthanidecontaining liquid crystals and surfactants. Chemical Reviews, 102, 2303–2345. DOI: 10.1021/cr010287y.CrossRefGoogle Scholar
  5. Bünzli, J. C. G., & Piguet, C. (2002). Lanthanide-containing molecular and supramolecular polymetalic functional assemblies. Chemical Reviews, 102, 1897–1928. DOI: 10.1021/cr010299j.CrossRefGoogle Scholar
  6. Bünzli, J. C. G., Chauvin, A. S., Kim, H. K., Deiters, E., & Eliseeva, S. V. (2010). Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordination Chemistry Reviews, 254, 2623–2633. DOI: 10.1016/j.ccr.2010.04.002.CrossRefGoogle Scholar
  7. Costes, J. P., Clemente-Juan, J. M., Dahan, F., Nicodème, F., & Verelst, M. (2002). Unprecedented ferromagnetic interaction in homobinuclear erbium and gadolinium complexes: Structural and magnetic studies. Angewandte Chemie International Edition, 41, 323–325. DOI: 10.1002/1521-3773(20020118)41:2<323.CrossRefGoogle Scholar
  8. Devi, S. P., Singh, R. K. H., & Kadam, R. M. (2006). Synthesis and spectroscopic studies on copper(II) binuclear complexe of 1-phenylamidino-O-alkylurea (alkyl = n-propyl, n- and iso-butyl) with 1,3-diaminopropane or ethylenediamine. Inorganic Chemistry, 45, 2193–2198. DOI: 10.1021/ic051037t.CrossRefGoogle Scholar
  9. Forsberg, J. H., & Moeller, T. (1969). Rare earths. LXXIX. Syntheses and properties of ethylenediamine chelates of the tripositive lanthanide ions. Inorganic Chemistry, 8, 883–888. DOI: 10.1021/ic50074a036.CrossRefGoogle Scholar
  10. Gudasi, K. B., Shenoy, R. V., Vadavi, R. S., Patil, M. S., Patil, S. A., Hanchinal, R. R., Desai, S. A., & Lohithaswa, H. (2006). Lanthanide(III) and yttrium(III) complexes of benzimidazole-2-acetic acid: Synthesis, characterization and effect of La(III) complex on germination of wheat. Bioinorganic Chemistry and Applications, 2006, 75612. DOI: 10.1155/bca/2006/75612.Google Scholar
  11. Gusev, A. N., Shul’gin, V. F., Nishimenko, G., Hasegawa, M., & Linert, W. (2013). Photo- and electroluminescent properties europium complexes using bistriazole ligands. Synthetic Metals, 164, 17–21. DOI: 10.1016/j.synthmet.2012.12.020.CrossRefGoogle Scholar
  12. Hirashima, Y., Kanetsuki, K., Yonezu, I., Kamakura, K., & Shiokawa, J. (1983). Lanthanoid nitrate complexes with some polyethylene glycols and glymes. Bulletin of the Chemical Society of Japan, 56, 738–743. DOI: 10.1246/bcsj.56.738.CrossRefGoogle Scholar
  13. Huang, H. L., Zhong, C. F., Zhang, H. L., & Zhou, Y. (2008). Synthesis and photophysical properties of novel polymeric Eu(III) complex with bicoordination ligand. Journal of Luminescence, 128, 1863–1866. DOI: 10.1016/j.jlumin.2008.05.008.CrossRefGoogle Scholar
  14. Hughes, E. W. (1940). The crystal structure of dicyandiamide. Journal of the American Chemical Society, 62, 1258–1267. DOI: 10.1021/ja01862a079.CrossRefGoogle Scholar
  15. Hughes, E. W. (1940). Contribution from the Gates and Crellin Laboratories of Chemistry, 62, 1258.Google Scholar
  16. Kido, J., & Okamoto, Y. (2002). Organo lanthanide metal complexes for electroluminescent materials. Chemical Reviews, 102, 2357–2368. DOI: 10.1021/cr010448y.CrossRefGoogle Scholar
  17. Loitongbam, R. S., Singh, W. R., Phaomei, G., & Singh, N. S. (2013). Blue and green emission from Ce3+ and Tb3+ codoped Y2O3 nanoparticles. Journal of Luminescence, 140, 95–102. DOI: 10.1016/j.jlumin.2013.02.049.CrossRefGoogle Scholar
  18. Mahajan, R. K., Kaur, I., Kaur, R., Onimaru, A., Shinoda, S., & Tsukube, H. (2004). Lipophilic lanthanide tris(β-diketonate) complexes as an ionophore for Cl anionselective electrodes. Analytical Chemistry, 76, 7354–7359. DOI: 10.1021/ac0497858.CrossRefGoogle Scholar
  19. McDonald, J. E., & Moeller, T. (1977). The rare earths-XC. Lanthanide(III) complexes of 1,3-propanediamine. Journal of Inorganic and Nuclear Chemistry, 39, 2287–2288. DOI: 10.1016/0022-1902(77)80416-8.CrossRefGoogle Scholar
  20. Moeller, T., Birnbaum, E. R., Forsberg, J. H., & Gayhart, R. B. (1968). Some aspects of the coordination chemistry of the rare earth. In L. Eyring (Ed.), Progress in the science and technology of the rare earths (Vol. 3, pp. 66–128). New York, NY, USA: Pergamon Press.Google Scholar
  21. Moeller, T., Martin, D. F., Thompson, L. C., Ferrús, R., Feistel, G. R., & Randall, W. J. (1965). The coordination chemistry of yttrium and rare earth metal ions. Chemical Reviews, 65, 1–50. DOI: 10.1021/cr60233a001.CrossRefGoogle Scholar
  22. Mutalik, V., & Phaniband, M. A. (2011). Synthesis, characterization, fluorescent and antimicrobial properties of new lanthanide(III) complexes derived from coumarin Schiff base. Journal of Chemical and Pharmaceutical Research, 3, 313–330.Google Scholar
  23. Mungchamnakit, A., Limsuwan, P., Thongcham, K., & Meejoo, S. (2008). The electron spin resonance study of Gd3+ in natural zircon. Journal of Magnetism and Magnetic Materials, 320, 479–482. DOI: 10.1016/j.jmmm.2007.07.014.CrossRefGoogle Scholar
  24. Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds (4th ed., pp. 257). New York, NY, USA: Wiley.Google Scholar
  25. Ndao, A. S., Buzády, A., Erostyák, J., & Hornyák, I. (2008). Sensitized luminescence of trivalent lanthanide complexes Eu3+/quinaldinic acid and Eu3+/1,4-dihydro-oxo-chinoline-3-carboxylic acid. Journal of Fluorescence, 18, 649–654. DOI: 10.1007/s10895-008-0333-2.CrossRefGoogle Scholar
  26. Prasad, S., Agarwal, R. K., & Kumar, A. (2011). Synthesis, characterization and biological evaluation of a novel series of mixed ligand complexes of lanthanides(III) with 4[N-(furfural)amino]antipyrine semicarbazone as primary ligand and diphenyl sulfoxide as secondary ligand. Journal of the Iranian Chemical Society, 8, 825–839. DOI: 10.1007/bf03245913.CrossRefGoogle Scholar
  27. Ramirez, F. D. M., Sosa-Torres, M. L., Castro, M., Basurto-Uribe, E., Zamorano-Ulloa, R., & del Río-Portilla, F. (1997). Synthesis, 1H, 13C NMR and magnetic studies of the homodinuclear lanthanide(III) polymeric compounds formed with the 1,5,9,13-tetraazacyclonehexadecane ligand. Journal of Coordination Chemistry, 41, 303–326. DOI: 10.1080/00958979708045507.CrossRefGoogle Scholar
  28. Radhakrisnan, P. K., Indrasenan, P., & Nair, C. G. R. (1984). Complexes of lanthanide nitrates with 4n-(2′-hydroxybenzylidene)-aminoantipyrine. Polyhedron, 3, 67–70. DOI: 10.1016/s0277-5387(00)84714-2.CrossRefGoogle Scholar
  29. Rizzi, A., Baggio, R., Calvo, R., Garland, M. T., Peña, O., & Perec, M. (2001). Synthesis, crystal structure and magnetic properties of the mixed-ligand complex [Gd(CF3CO2)3 (phen)2(H2O)]. Inorganic Chemistry, 40, 3623–3625. DOI: 10.1021/ic001243v.CrossRefGoogle Scholar
  30. Singh, L. J., Devi, N. S., Devi, S. P., Devi, W. B., Singh, R. K. H., Rajeswari, B., & Kadam, R. M. (2010). Spectroscopic studies on bis(1-amidino-O-alkylurea) copper(II) sulphate complexes where alkyl = methyl, ethyl, n-propyl or n-butyl: EPR evidence for binuclear complexes. Inorganic Chemistry Communications, 13, 365–368. DOI:10.1016/j.inoche.2009.12.023.CrossRefGoogle Scholar
  31. Singh, L. J., Singh, R. K. H., & Chitra, R. (2012). Synthesis, spectroscopic, powder X-ray diffraction and DNA binding studies on copper(II) complexes of 4,4′-diaminodiphenyl sulfone. Journal of the Iranian Chemistry Society, 9, 441–448. DOI: 10.1007/s13738-011-0054-3.CrossRefGoogle Scholar
  32. Svatos, G. F., Curran, C., & Quagliano, J. V. (1955). Infrared absorption spectra of inorganic coordination complexes.1a,b V. The N-H stretching vibration in coordination compounds. Journal of the American Chemical Society, 77, 6159–6163. DOI: 10.1021/ja01628a019.CrossRefGoogle Scholar
  33. Wang, H. D., Chen, Y., Li, Y. T., & Zeng, X. C. (2004). Synthesis, characterisation, and thermal decomposition of oxamido heterobinuclear Cu(II)-Ln(III) complexes. Thermochimica Acta, 412, 97–105. DOI: 10.1016/j.tca.2003.09.006.CrossRefGoogle Scholar
  34. Wu, A. Q., Zheng, F. K., Chen, W. T., Cai, L. Z., Guo, G. C., Huang, J. S., Dong, Z. C., & Takano, Y. (2004). Two series of novel rare earth complexes with dicyanamide [Ln(dca)2(phen)2(H2O)3][dca]·(phen), (Ln = Pr, Gd, and Sm) and [Ln(dca)3(2,2′-bipy)2(H2O)]n, (Ln = Gd, Sm, and La): Syntheses, crystal structures, and magnetic properties. Inorganic Chemistry, 43, 4839–4845. DOI: 10.1021/ic035470j.CrossRefGoogle Scholar
  35. Yan, B., & Song, Y. S. (2004). Spectroscopic study on the photophysical properties of lanthanide complexes with 2,2′-bipyridine-N,N′-dioxide. Journal of Fluorescence, 14, 289–294. DOI: 10.1023/b:jofl.0000024561.55183.26.CrossRefGoogle Scholar
  36. Zucchi, G. (2011). The utility of 2,2′-bipyridine in lanthanide chemistry: From materials synthesis to structural and physical properties. International Journal of Inorganic Chemistry, 2011, 918435. DOI: 10.1155/2011/918435.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of ChemistryManipur UniversityImphalIndia

Personalised recommendations