Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 190–196 | Cite as

Influence of operating conditions on performance of ceramic membrane used for water treatment

  • Agnieszka UrbanowskaEmail author
  • Małgorzata Kabsch-Korbutowicz
Original Paper

Abstract

The removal of natural organic matter (NOM) is a critical aspect of potable water treatment because NOM compounds are precursors of harmful disinfection by-products, hence should be removed from water intended for human consumption. Ultrafiltration using ceramic membranes can be a suitable process for removal of natural substances. Previously reported experiments were dedicated to evaluating the suitability of ultrafiltration through ceramic membrane for water treatment with a focus on the separation of natural organic matter. The effects of the membrane operating time and linear flow velocity on transport and separation properties were also examined. The experiments, using a 7-channel 300 kDa MWCO ceramic membrane, were carried out with model solutions and surface water at trans-membrane pressure of 0.2–0.5 MPa. The results revealed that a loose UF ceramic membrane can successfully eliminate natural organic matter from water. The permeability of the membrane was strongly affected by the composition of the feed stream, i.e. the permeate flux decreased with an increase in the NOM concentration. The permeate flux also decreased over the period of the operation, while this parameter did not influence the effectiveness of separation, i.e. the removal of NOM. It was observed that the increased cross-flow velocity resulted in the decrease in the membrane-fouling intensity and slightly improved the retention of contaminants.

Keywords

surface water treatment natural organic matter low-pressure membranes ultrafiltration ceramic membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calvo, J. I., Bottino, A., Capannelli, G.,& Hernández, A. (2008). Pore size distribution of ceramic UF membranes by liquid-liquid displacement porosimetry. Journal of Membrane Science, 310, 531–538. DOI:10.1016/j.memsci.2007.11.035.CrossRefGoogle Scholar
  2. Grefte, A., Dignum, M., Cornelissen, E. R.,& Rietveld, L. C. (2013). Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane. Drinking Water Engineering and Science, 6, 1–10. DOI:10.5194/dwes-6-1-2013.CrossRefGoogle Scholar
  3. Guerra, K., Pellegrino, J.,& Drewes, J. E. (2012). Impact of operating conditions on permeate flux and process economics for cross flow ceramic membrane ultrafiltration of surface water. Separation and Purification Technology, 87, 47–53. DOI:10.1016/j.seppur.2011.11.019.CrossRefGoogle Scholar
  4. Hofs, B., Ogier, J., Vries, D., Beerendonk, E. F.,& Cornelissen, E. R. (2011). Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Separation and Purification Technology, 79, 365–374. DOI:10.1016/j.seppur.2011.03.025.CrossRefGoogle Scholar
  5. Jaouadi, M., Amdouni, N.,& Duclaux, L. (2012). Characteristics of natural organic matter extracted from the waters of Medjerda dam (Tunisia). Desalination, 305, 64–71. DOI:10.1016/j.desal.2012.07.008.CrossRefGoogle Scholar
  6. Kabsch-Korbutowicz, M.,& Urbanowska, A. (2012). Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration. Membrane Water Treatment, 3, 211–219.CrossRefGoogle Scholar
  7. Kanan, A.,& Karanfil, T. (2011). Formation of disinfection by-products in indoor swimming pool water: The contribution from filling water natural organic matter and swimmer body fluids. Water Research, 45, 926–932. DOI:10.1016/j.watres.2010.09.031.CrossRefGoogle Scholar
  8. Kuca, M.,& Szaniawska, D. (2009). Application of microfiltration and ceramic membranes for treatment of salted aqueous effluents from fish processing. Desalination, 241, 227–235. DOI:10.1016/j.desal.2008.01.068.CrossRefGoogle Scholar
  9. Lee, S. Y.,& Cho, J. W. (2004). Comparison of ceramic and polymeric membranes for natural organic matter (NOM) removal. Desalination, 160, 223–232. DOI: 10.1016/s0011-9164(04)90025-2.CrossRefGoogle Scholar
  10. Liu, H. C., Feng, S. P., Du, X. L., Zhang, N. N.,& Li, Y. L. (2011). Comparison of three sorbents for organic pollutant removal in drinking water. Energy Procedia, 5, 985–990. DOI:10.1016/j.egypro.2011.03.174.CrossRefGoogle Scholar
  11. Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A.,& Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83, 1431–1442. DOI: 10.1016/j.chemosphere.2011.01.018.CrossRefGoogle Scholar
  12. Polish Ministry of Health (2007). 417. The Minister of Health order on March 29, 2007 on the quality of water intended for human consumption. Dziennik Ustaw, 61, 3726–3743. (in Polish)Google Scholar
  13. Polish Ministry of Health (2010). 466. The Minister of Health order on April 20, 2010 on the quality of water intended for human consumption. Dziennik Ustaw, 72, 6333–6342. (in Polish)Google Scholar
  14. Rao, P. H., Lo, I. M. C., Yin, K.,& Tang, S. C. N. (2011). Removal of natural organic matter by cationic hydrogel with magnetic properties. Journal of Environmental Management, 92, 1690–1695. DOI:10.1016/j.jenvman.2011.01.028.CrossRefGoogle Scholar
  15. Raspati, G. S., Høvik, H. N.,& Leiknes, T. O. (2011). Preferential fouling of natural organic matter (NOM) fractions in submerged low-pressure membrane filtration. Desalination and Water Treatment, 34, 416–422. DOI:10.5004/dwt.2011.2901.CrossRefGoogle Scholar
  16. Sentana, I., Puche, R. D. S., Sentana, E.,& Prats, D. (2011). Reduction of chlorination byproducts in surface water using ceramic nanofiltration membranes. Desalination, 277, 147–155. DOI:10.1016/j.desal.2011.04.016.CrossRefGoogle Scholar
  17. Sobsey, M. D., Stauber, C. E., Casanova, L. M., Brown, J. M.,& Elliot, M. A. (2008). Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world. Environmental Science & Technology, 42, 4261–4267. DOI: 10.1021/es702746n.CrossRefGoogle Scholar
  18. Velten, S., Knappe, D. R. U., Traber, J., Kaiser, H. P., von Gunten, U., Boller, M.,& Meylan, S. (2011). Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Research, 45, 3951–3959. DOI:10.1016/j.watres.2011.04.047.CrossRefGoogle Scholar
  19. Xu, J., Chang, C. Y.,& Gao, C. J. (2010). Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination. Separation and Purification Technology, 75, 165–173. DOI:10.1016/j.seppur.2010.07.020.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Agnieszka Urbanowska
    • 1
    Email author
  • Małgorzata Kabsch-Korbutowicz
    • 1
  1. 1.Institute of Environment Protection EngineeringWroclaw University of TechnologyWroclawPoland

Personalised recommendations