Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 217–222 | Cite as

Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors

  • Sudheesh K. Shukla
  • Eric S. Agorku
  • Hemant Mittal
  • Ajay K. MishraEmail author
Original Paper

Abstract

The present study involves the synthesis of Ce3+ doped ZnO nanophosphors by the zinc nitrate and cerium nitrate co-precipitation method. The synthesized nanophosphors were characterized with respect to their crystal structure, crystal morphology, particle size and photoluminescence (PL) properties using X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), transmission electron microscopy (TEM)/Energy-dispersive X-ray spectroscopy (EDS) and PL-spectroscopy respectively. XRD results revealed that ZnO nanophosphors are single phase and cubic type structures. Further, PL spectra of ZnO:Ce3+ nanophosphors showed green emission because of the charge transfer at single occupied oxygen vacancies with ZnO holes and red emission due to the cerium ion transitions. Intensity and fine structure of the Ce3+ luminescence and its temperature dependence are strongly influenced by the doping conditions. The formation of ZnO:Ce3+ nanophosphors was confirmed by Fourier transform infrared (FTIR) and XRD spectra.

Keywords

nanophosphors doping co-precipitation FTIR photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cruz-Vázquez, C., Bernal, R., Burruel-Ibarra, S. E., Grijalva-Monteverde, H.,& Barboza-Flores, M. (2005). Thermoluminescence properties of new ZnO nanophosphors exposed to beta irradiation. Optical Materials, 27, 1235–1239. DOI: 10.1016/j.optmat.2004.11.016.CrossRefGoogle Scholar
  2. Djelloul, A., Aida, M. S.,& Bougdira, J. (2010). Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis. Journal of Luminescence, 130, 2113–2117. DOI: 10.1016/j.jlumin.2010.06.002.CrossRefGoogle Scholar
  3. Hauschild, R., Priller, H., Decker, M., Brückner, J., Kalt, H.,& Klingshirn, C. (2006). Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO. Physica Status Solidi (C), 3, 976–979. DOI: 10.1002/pssc.200564643.CrossRefGoogle Scholar
  4. Jattukul, S., Thongtem, S.,& Thongtem, T. (2011). Morphology development of ZnO produced by sonothermal process. Ceramics International, 37, 2055–2059. DOI: 10.1016/j.ceramint.2011.02.019.CrossRefGoogle Scholar
  5. Kaschner, A., Haboeck, U., Strassburg, M., Strassburg, M., Kaczmarczyk, G., Hoffmann, A., Thomsen, C., Zeuner, A., Alves, H. R., Hofmann, D. M.,& Meyer, B. K. (2002). Nitrogen-related local vibrational modes in ZnO:N. Applied Physics Letters, 80, 1909–1911. DOI: 10.1063/1.1461903.CrossRefGoogle Scholar
  6. Klingshirn, C. (2007a). ZnO: Material, physics and applications. ChemPhysChem, 8, 782–803. DOI: 10.1002/cphc.200700002.CrossRefGoogle Scholar
  7. Klingshirn, C. (2007b). ZnO: From basics towards applications. Physica Status Solidi (B), 244, 3027–3073. DOI: 10.1002/pssb.200743072.CrossRefGoogle Scholar
  8. Klingshirn, C., Hauschild, R., Fallert, J.,& Kalt, H. (2007). Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing. Physical Review B, 75, 115203. DOI: 10.1103/physrevb.75.115203.CrossRefGoogle Scholar
  9. Kumar, V., Mishra, V., Biggs, M. M., Nagpure, I. M., Ntwaeaborwa, O. M., Terblans, J. J.,& Swart, H. C. (2010). Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications. Applied Surface Science, 256, 1720–1724. DOI:10.1016/j.apsusc.2009.09.101.CrossRefGoogle Scholar
  10. Kumaran, S. M.,& Gopalakrishnan, R. (2012). Structural, optical and photoluminescence properties of Zn1−xCexO (x = 0, 0.05 and 0.1) nanoparticles by sol-gel method annealed under Ar atmosphere. Journal of Sol-Gel Science and Technology, 62, 193–200. DOI: 10.1007/s10971-012-2708-8.CrossRefGoogle Scholar
  11. Li, Z. Q., Xiong, Y. J.,& Xie, Y. (2003). Selected-control synthesis of ZnO nanowires and nanorods via a PEGassisted route. Inorganic Chemistry, 42, 8105–8109. DOI: 10.1021/ic034029q.CrossRefGoogle Scholar
  12. Maciel, A. V., da Nova Mussel, W.,& Pasa, V. M. D. (2010). A novel synthesis of nanostructured ZnO via thermal oxidation of Zn nanowires obtained by a green route. Materials Sciences and Applications, 1, 279–284. DOI:10.4236/msa.2010.15041.CrossRefGoogle Scholar
  13. Manam, J., Das, S.,& Isaac, A. (2009). Preparation, characterization and thermally stimulated luminescence of ZnO nanophosphor. Indian Journal of Physics, 83, 1407–1419. DOI: 10.1007/s12648-009-0129-5.CrossRefGoogle Scholar
  14. Moghaddam, A. B., Nazari, T., Badraghi, J.,& Kazemzad, M. (2009). Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite films. International Journal of Electrochemical Science, 4, 247–257.Google Scholar
  15. Murray, C. B., Norris, D. J.,& Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115, 8706–8715. DOI: 10.1021/ja00072a025.CrossRefGoogle Scholar
  16. Nalwa, H. S., & Rohwer, L. S. (2003). Handbook of luminescence, display materials, and devices: Inorganic display. California, CA, USA: American Scientific Publishers.Google Scholar
  17. Patra, A.,& Ganguli, D. (1992). Paramagnetic centers in unirradiated boron-doped silica gel. Journal of Non-Crystalline Solids, 144, 111–113. DOI: 10.1016/s0022-3093(05)80391-6.CrossRefGoogle Scholar
  18. Reisfeld, R., Patra, A., Panczer, G.,& Gaft, M. (1999). Spectroscopic properties of cerium in sol-gel glasses. Optical Materials, 13, 81–88. DOI: 10.1016/s0925-3467(99)00015-4.CrossRefGoogle Scholar
  19. Shukla, S. K., Deshpande, S. R., Shukla, S. K.,& Tiwari, A. (2012). Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta, 99, 283–287. DOI: 10.1016/j.talanta.2012.05.052.CrossRefGoogle Scholar
  20. Turos-Matysiak, R., Gryk, W., Grinberg, M., Lin, Y. S.,& Liu, R. S. (2006). Tb3+ → Ce3+ energy transfer in Ce3+-doped Y3−xTbxGd0.65Al5O12. Journal of Physics: Condensed Matter, 18, 10531. DOI: 10.1088/0953-8984/18/47/001.CrossRefGoogle Scholar
  21. van Dijken, A., Meulenkamp, E. A., Vanmaekelbergh, D., & Meijerink, A. (2000). Identification of the transition responsible for the visible emission in ZnO using quantum size effects. Journal of Luminescence, 90, 123–128. DOI: 10.1016/s0022-2313(99)00599-2.CrossRefGoogle Scholar
  22. Wu, J. L., Gundiah, G.,& Cheetham, A. K. (2007). Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting. Chemical Physics Letters, 441, 250–254. DOI:10.1016/j.cplett.2007.05.023.CrossRefGoogle Scholar
  23. Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006). Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi (C), 3, 3577–3581. DOI:10.1002/pssc.200672164.CrossRefGoogle Scholar
  24. Ye, S., Xiao, F., Pan, Y. X., Ma, Y. Y.,& Zhang, Q. Y. (2010). Phosphors in phosphor-converted white lightemitting diodes: Recent advances in materials, techniques and properties. Materials Science and Engineering: R: Reports, 71, 1–34. DOI:10.1016/j.mser.2010.07.001.CrossRefGoogle Scholar
  25. Zimmler, M. A., Voss, T., Ronning, C.,& Capasso, F. (2009). Exciton-related electroluminescence from ZnO nanowire light-emitting diodes. Applied Physics Letters, 94, 241120. DOI: 10.1063/1.3157274.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Sudheesh K. Shukla
    • 1
  • Eric S. Agorku
    • 1
  • Hemant Mittal
    • 1
  • Ajay K. Mishra
    • 1
    Email author
  1. 1.Department of Applied ChemistryUniversity of JohannesburgDoornfonteinJohannesburg, South Africa

Personalised recommendations