Chemical Papers

, Volume 68, Issue 2, pp 170–179 | Cite as

Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines

  • Anumula Rajini
  • Muralasetti Nookaraju
  • Ingala Ajit Kumar Reddy
  • Venkatathri NarayananEmail author
Original Paper


A novel vanadium dodecylamino phosphate was synthesised by an instant reaction between phosphoric acid and vanadyl acetylacetonoate using dodecylamine as the structure-directing agent at ambient temperature. The physicochemical characteristics of the material were investigated by a variety of analytical techniques. XRD studies revealed the presence of vanadium phosphate and hydrated vanadium phosphate phases in the framework of the material. The catalytic application of this material toward in the synthesis of polyhydroquinolines via Hantzsch condensation was investigated at ambient temperature. This method affords high yields within short reaction times. The influence of various reaction parameters such as different solvents, catalyst dosage, effect of aldehydes, and reusability was studied and a plausible mechanism proposed.


vanadium dodecylamine Hantzsch condensation polyhydroquinolines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beneš, L., Melánová, K., Zima, V., Trchová, M., Čapková, P., & Koudelka, B. (2006). Vanadyl phosphate intercalated with dimethyl sulfoxide. Journal of Physics and Chemistry of Solids, 67, 956–960. DOI:10.1016/j.jpcs.2006.01.009.CrossRefGoogle Scholar
  2. Bergman, R. L., & Frisch, N. W. (1966). U.S. Patent No. 3293268. Washington, DC, USA: U.S. Patent and Trademark Office.Google Scholar
  3. Borah, P.,& Datta, A. (2010). Exfoliated VOPO4 · 2H2O dispersed on alumina as a novel catalyst for the selective oxidation of cyclohexane. Applied Catalysis A: General, 376, 19–24. DOI:10.1016/j.apcata.2009.11.020.CrossRefGoogle Scholar
  4. Cavani, F., Foresti, E., Trifiró, F.,& Busca, G. (1987). Nature of active species in the ammoxidation of toluene over V2O5/TiO2 catalysts prepared by flash-drying. Journal of Catalysis, 106(1), 251–262. DOI: 10.1016/0021-9517(87) 90229-6.CrossRefGoogle Scholar
  5. Chandrasekhar, S., Rao, Y. S., Sreelakshmi, L., Mahipal, B.,& Reddy, C. R. (2008). Tris(pentafluorophenyl)boranecatalyzed three-component reaction for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions. Synthesis, 2008, 1737–1740. DOI:10.1055/s-2008-1067039.CrossRefGoogle Scholar
  6. Chen, Y. L., Fang, K. C., Sheu, J. Y., Hsu, S. L.,& Tzeng, C. C. (2001). Synthesis and antibacterial evaluation of certain quinolone derivatives. Journal of Medicinal Chemistry, 44, 2374–2377. DOI: 10.1021/jm0100335.CrossRefGoogle Scholar
  7. Chen, W. Y., Qin, S. D.,& Jin, J. R. (2007). HBF4-catalyzed Biginelli reaction: One-pot synthesis of dihydropyrimidin-2(1H)-ones under solvent-free conditions. Catalysis Communications, 8, 123–126. DOI:10.1016/j.catcom.2006.05.026.CrossRefGoogle Scholar
  8. Choudary, B. M., Neeraja, V.,& Lakshmi Kantam, M. (2001). Vanadyl(IV) acetate: a mild and efficient heterogeneous catalyst for the tetrahydropyranylation of alcohols, thiols and phenols. Journal of Molecular Catalysis A: Chemical, 175, 169–172. DOI: 10.1016/s1381-1169(01)00202-3.CrossRefGoogle Scholar
  9. Das, B., Ravikanth, B., Ramu, R.,& Rao, B. V. (2006). An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite. Chemical & Pharmaceutical Bulletin, 54, 1044–1045. DOI: 10.1248/cpb.54.1044.CrossRefGoogle Scholar
  10. Das, D. P.,& Parida, K. M. (2008). Solar light induced photocatalytic degradation of pollutants over titania pillared zirconium phosphate and titanium phosphate. Catalysis Surveys from Asia, 12, 203–213. DOI: 10.1007/s10563-008-9052-6.CrossRefGoogle Scholar
  11. Dasgupta, S., Agarwal, M.,& Datta, A. (2002). Long chain alkyl amine templated synthesis of a mesostructured lamellar vanadium phosphate phase. Journal of Materials Chemistry, 12, 162–164. DOI: 10.1039/b109472f.CrossRefGoogle Scholar
  12. Dasgupta, S., Agarwal, M.,& Datta, A. (2004). Surfactant assisted organization of an exfoliated vanadyl ortho phosphate to a mesostructured lamellar vanadium phosphate phase. Microporous and Mesoporous Materials, 67, 229–234. DOI:10.1016/j.micromeso.2003.11.006.CrossRefGoogle Scholar
  13. Datta, A., Dasgupta, S., Agarwal, M.,& Ray, S. S. (2005). Mesolamellar VPO phases obtained by incorporating long chain alkyl amine surfactants into the layered vanadium phosphate dihydrate phase. Microporous and Mesoporous Materials, 83, 114–124. DOI:10.1016/j.micromeso.2005.03.019.CrossRefGoogle Scholar
  14. Dias, C. R., Portela, M. F., Galán-Fereres, M., Bañares, M. A., López Granados, M., Peña, M. A.,& Fierro, J. L. G. (1997). Selective oxidation of o-xylene to phthalic anhydride on V2O5 supported on TiO2-coated SiO2. Catalysis Letters, 43, 117–121. DOI:10.1023/a:1018990506391.CrossRefGoogle Scholar
  15. Evans, C. G.,& Gestwicki, J. E. (2009). Enantioselective organocatalytic Hantzsch synthesis of polyhydroquinolines. Organic Letters, 11, 2957–2959. DOI: 10.1021/ol901114f.CrossRefGoogle Scholar
  16. Gribot-Perrin, N., Volta, J. C., Burrows, A., Kiely, C.,& Gubelmann-Bonneau, M. (1996). On the role of microstructure of vanadium phosphorus oxides for propane oxidation to acrylic acid. Studies in Surface Science and Catalysis, 101, 1205–1214. DOI: 10.1016/s0167-2991(96)80332-6.CrossRefGoogle Scholar
  17. Guan, J. Q., Xu, H. Y., Jing, S. B., Wu, S. J., Ma, Y. Y., Shao, Y. Q.,& Kan, Q. B. (2008). Selective oxidation of isobutane and isobutene over vanadium phosphorus oxides. Catalysis Communications, 10, 276–280. DOI:10.1016/j.catcom.2008.09.003.CrossRefGoogle Scholar
  18. Guliants, V. V., Benziger, J. B., Sundaresan, S., Wachs, I. E., Jehng, J. M.,& Roberts, J. E. (1996). The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane. Catalysis Today, 28, 275–295. DOI: 10.1016/s0920-5861(96)00043-0.CrossRefGoogle Scholar
  19. Heydari, A., Khaksar, S., Tajbakhsh, M.,& Bijanzadeh, H. R. (2009). One-step synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. Journal of Fluorine Chemistry, 130, 609–614. DOI:10.1016/j.jfluchem.2009.03.014.CrossRefGoogle Scholar
  20. Hong, M., Cai, C., & Yi, W. B. (2010). Hafnium (IV) bis(perfluorooctanesulfonyl)imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous medium. Journal of Fluorine Chemistry, 131, 111–114. DOI:10.1016/j.jfluchem.2009.10.009.CrossRefGoogle Scholar
  21. Ji, S. J., Jiang, Z. Q., Lu, J.,& Loh, T. P. (2004). Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent-free conditions. Synlett, 2004, 831–835. DOI:10.1055/s-2004-820035.CrossRefGoogle Scholar
  22. Ko, S. K., Sastry, M. N. V., Lin, C. C.,& Yao, C. F. (2005). Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Letters, 46, 5771–5774. DOI: 10.1016/j.tetlet.2005.05.148.CrossRefGoogle Scholar
  23. Kondratenko, E. V., Cherian, M.,& Baerns, M. (2006). Oxidative dehydrogenation of propane over differently structured vanadia-based catalysts in the presence of O2 and N2O. Catalysis Today, 112, 60–63. DOI:10.1016/j.cattod.2005.11.028.CrossRefGoogle Scholar
  24. Kolvari, E., Zolfigol, M. A., Koukabi, N.,& Shirmardi-Shaghasemi, B. (2011). A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions. Chemical Papers, 65, 898–902. DOI: 10.2478/s11696-011-0087-1.CrossRefGoogle Scholar
  25. Kumar, S., Sharma, P., Kapoor, K. K.,& Hundal, M. S. (2008). An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron, 64, 536–542. DOI:10.1016/j.tet.2007.11.008.CrossRefGoogle Scholar
  26. Machado, M. O., de Farias, R. F.,& Airoldi, C. (2004). Two different synthetic routes involving the reaction of dodecylamine or nicotinamide with crystalline lamellar vanadylphosphate. Journal of Physics and Chemistry of Solids, 65, 1697–1703. DOI:10.1016/j.jpcs.2004.04.008.CrossRefGoogle Scholar
  27. Nagaraju, P., Lingaiah, N., Prasad, P. S. S., Kalevaru, V. N.,& Martin, A. (2008). Preparation, characterization and catalytic properties of promoted vanadium phosphate catalysts. Catalysis Communications, 9, 2449–2454. DOI:10.1016/j.catcom.2008.06.012.CrossRefGoogle Scholar
  28. Nagarapu, L., Apuri, S., Gaddam, S., Bantu, R., Mahankhali, V. C.,& Kantevari, S. (2008). A facile synthesis of polyhydroquinoline derivatives via the Hantzsch reaction under solvent free-conditions using potassium dodecatungsto cobaltate trihydrate (K5CoW12O40.3H2O). Letters in Organic Chemistry, 5, 60–64. DOI: 10.2174/157017808783330162.CrossRefGoogle Scholar
  29. Nguyen-Phan, T. D., Song, M. B., Yun, H., R. Kim, E. J., Oh, E. S.,& Shin, E. W. (2011). Characterization of vanadiumdoped mesoporous titania and its adsorption of gaseous benzene. Applied Surface Science, 257, 2024–2031. DOI:10.1016/j.apsusc.2010.09.046.CrossRefGoogle Scholar
  30. Oskooie, H. A., Baghernezhad, B., Heravi M. M.,& Beheshtiha, Y. Sh. (2008). Vanadyl sulfate (VOSO4.3H2O). An efficient catalyst for acylation of alcohols and phenols under solvent free condition. Journal of the Chinese Chemical Society, 55, 713–715.Google Scholar
  31. Perozo-Rondón, E., Calvino-Casilda, V., Martín-Aranda, R. M., Casal, B., Durán-Valle, C. J.,& Rojas-Cervantes, M. L. (2006). Catalysis by basic carbons: Preparation of dihydropyridines. Applied Surface Science, 252, 6080–6083. DOI:10.1016/j.apsusc.2005.11.017.CrossRefGoogle Scholar
  32. Rownaghi, A. A., Taufiq-Yap, Y. H.,& Rezaei, F. (2009). Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Journal of Chemical Engineering, 155, 514–522. DOI:10.1016/j.cej.2009.07.055.CrossRefGoogle Scholar
  33. Sabitha, G., Kiran Kumar Reddy, G. S., Srinavas Reddy, C.,& Yadav, J. S. (2003a). A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Letters, 44, 4129–4131. DOI: 10.1016/s0040-4039(03)00813-x.CrossRefGoogle Scholar
  34. Sabitha, G., Kiran Kumar Reddy, G. S., Bhaskar Reddy, K.,& Yadav, J. S. (2003b). Vanadium(III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-(2H)-ones. Tetrahedron Letters, 44, 6497–6499. DOI: 10.1016/s0040-4039(03)01564-8.CrossRefGoogle Scholar
  35. Samantaray, S. K., Mishra, T.,& Parida, K. M. (2000). Studies on anion promoted titania: 2: Preparation, characterisation and catalytic activity towards aromatic alkylation over sulfated titania. Journal of Molecular Catalysis A: Chemical, 156, 267–274. DOI: 10.1016/s1381-1169(99)00424-0.CrossRefGoogle Scholar
  36. Shan, R. D., Velazquez, C.,& Knaus, E. E. (2004). Syntheses, calcium channel agonist-antagonist modulation activities, and nitric oxide release studies of nitrooxyalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate racemates, enantiomers, and diastereomers. Journal of Medicinal Chemistry, 47, 254–261. DOI: 10.1021/jm030333h.CrossRefGoogle Scholar
  37. Solsona, B., Zazhigalov, V. A., López-Nieto, J. M., Bacherikova, I. V.,& Diyuk, E. A. (2003). Oxidative dehydrogenation of ethane on promoted VPO catalysts. Applied Catalysis A: General, 249, 81–92. DOI: 10.1016/s0926-860x(03)00178-9.CrossRefGoogle Scholar
  38. Song, G. Y., Wang, B., Wu, X. Y., Kang, Y. R.,& Yang, L. M. (2005). Montmorillonite K10 clay: An effective solid catalyst for one-pot synthesis of polyhydroquinoline derivatives. Synthetic Communications, 35, 2875–2880. DOI: 10.1080/00397910500297255.CrossRefGoogle Scholar
  39. Sunil Kumar, B., Kumar, P. S., Srinivasulu, N., Rajitha, B., Thirupathi Reddy, Y., Narsimha Reddy, P., & Udupi, R. H. (2006). Vanadium(III) chloride as an effective catalyst for the Pechmann reaction. Chemistry of Heterocyclic Compounds, 42, 172–175. DOI: 10.1007/s10593-006-0066-6.CrossRefGoogle Scholar
  40. Venkatathri, N., Santhanaraj, D.,& Shanthi, K. (2008). Synthesis, characterization and catalytic properties of a novel Mn — organophosphate having MFI topology. Bulletin of the Catalysis Society of India, 7(3), 97–104.Google Scholar
  41. Wang, L. M., Sheng, J., Zhang, L., Han, J. W., Fan, Z. Y., Tian, H.,& Qian, C. T. (2005). Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 61, 1539–1543. DOI:10.1016/j.tet.2004.11.079.CrossRefGoogle Scholar
  42. Wang, C. T., Chen, M. T.,& Lai, D. L. (2011). Surface characterization and reactivity of vanadium-tin oxide nanoparticles. Applied Surface Science, 257, 5109–5114. DOI:10.1016/j.apsusc.2011.01.031.CrossRefGoogle Scholar
  43. Whittington, B. I.,& Anderson, J. R. (1993). Nature and activity of some vanadium catalysts. The Journal of Physical Chemistry, 97, 1032–1041. DOI: 10.1021/j100107a010.CrossRefGoogle Scholar
  44. Wu, Z. L., Dai, S.,& Overbury, S. H. (2010). Multiwavelength Raman spectroscopic study of silica-supported vanadium oxide catalysts. The Journal of Physical Chemistry C, 114, 412–422. DOI: 10.1021/jp9084876.CrossRefGoogle Scholar
  45. Xue, M. W., Chen, H., Zhang, H. L., Auroux, A.,& Shen, J. Y. (2010). Preparation and characterization of V-Ag-O catalysts for the selective oxidation of toluene. Applied Catalysis A: General, 379, 7–14. DOI:10.1016/j.apcata.2010.02.023.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Anumula Rajini
    • 1
  • Muralasetti Nookaraju
    • 1
  • Ingala Ajit Kumar Reddy
    • 1
  • Venkatathri Narayanan
    • 1
    Email author
  1. 1.Department of ChemistryNational Institute of Technology WarangalWarangalIndia

Personalised recommendations