Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 233–238 | Cite as

Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties

  • Zdeněk HrdličkaEmail author
  • Antonín Kuta
  • Rafał Poręba
  • Milena Špírková
Original Paper

Abstract

Novel polyurethane thermoplastic elastomers were prepared from polycarbonate diols, butane-1,4-diol (chain extender) and hexamethylene diisocyanate. They differ in the kind of macrodiol used and the ratio of macrodiol to chain extender OH groups (hence, in hard segment contents). The tensile properties of the elastomers at low and elevated temperatures were determined and discussed with regard to polyurethane composition and polycarbonate diol structure.

Keywords

polyurethane elastomer polycarbonate diol tensile properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., & Iannace, S. (2011). Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. European Polymer Journal, 47, 925–936. DOI: 10.1016/j.eurpolymj.2011.01.005.CrossRefGoogle Scholar
  2. Bagdi, K., Molnár, K., Sajó, I., & Pukánszky, B. (2011a). Specific interactions, structure, and properties in segmented polyurethane elastomers. eXPRESS Polymer Letters, 5, 417–427. DOI: 10.3144/expresspolymlett.2011.41.CrossRefGoogle Scholar
  3. Bagdi, K., Molnár, K., Wacha, A., Bóta, A., & Pukánszky, B. (2011b). Hierarchical structure of phase-separated segmented polyurethane elastomers and its effect on properties. Polymer International, 60, 529–536. DOI: 10.1002/pi.3003.CrossRefGoogle Scholar
  4. Christenson, E. M., Anderson, J. M., & Hiltner, A. (2006). Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation. Journal of Biomedical Materials Research Part A, 76, 480–490. DOI: 10.1002/jbm.a.30506.CrossRefGoogle Scholar
  5. Eceiza, A., Larrañaga, M., de la Caba, K., Kortaberria, G., Marieta, C., Corcuera, M. A., & Mondragon, I. (2008a). Structure-property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. Journal of Applied Polymer Science, 108, 3092–3103. DOI: 10.1002/app.26553.CrossRefGoogle Scholar
  6. Eceiza, A., Martin, M. D., de la Caba, K., Kortaberria, G., Gabilondo, N., Corcuera, M. A., & Mondragon, I. (2008b). Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polymer Engineering & Science, 48, 297–306. DOI: 10.1002/pen.20905.CrossRefGoogle Scholar
  7. Fernández-d’Arlas, B., Rueda, L., Fernández, R., Khan, U., Coleman, J. N., Mondragon, I., & Eceiza, A. (2010). Inverting polyurethanes synthesis: Effects on nano/micro-structure and mechanical properties. Soft Materials, 9, 79–93. DOI: 10.1080/1539445x.2010.525173.CrossRefGoogle Scholar
  8. Hepburn, C. (1992). Polyurethane elastomers. London, UK: Elsevier.CrossRefGoogle Scholar
  9. Hernandez, R., Weksler, J., Padsalgikar, A., Choi, T., Angelo, E., Lin, J. S., Xu, L. C., Siedlecki, C. A., & Runt, J. (2008). A comparison of phase organization of model segmented polyurethanes with different intersegment compatibilities. Macromolecules, 41, 9767–9776. DOI: 10.1021/ma8014454.CrossRefGoogle Scholar
  10. Kojio, K., Nonaka, Y., Masubuchi, T., & Furukawa, M. (2004). Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers. Journal of Polymer Science Part B: Polymer Physics, 42, 4448–4458. DOI: 10.1002/polb.20303.CrossRefGoogle Scholar
  11. Kojio, K., Nakamura, S., & Furukawa, M. (2008). Effect of side groups of polymer glycol on microphase-separated structure and mechanical properties of polyurethane elastomers. Journal of Polymer Science Part B: Polymer Physics, 46, 2054–2063. DOI: 10.1002/polb.21540.CrossRefGoogle Scholar
  12. Kojio, K., Furukawa, M., Motokucho, S., Shimada, M., & Sakai, M. (2009a). Structure-mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments. Macromolecules, 42, 8322–8327. DOI: 10.1021/ma901317t.CrossRefGoogle Scholar
  13. Kojio, K., Kugumiya, S., Uchiba, Y., Nishino, Y., & Furukawa, M. (2009b). The microphase-separated structure of polyurethane bulk and thin films. Polymer Journal, 41, 118–124. DOI: 10.1295/polymj.pj2008186.CrossRefGoogle Scholar
  14. Kultys, A., Rogulska, M., Pikus, S., & Skrzypiec, K. (2009). The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic-aromatic chain extenders. European Polymer Journal, 45, 2629–2643. DOI: 10.1016/j.eurpolymj.2009.06.003.CrossRefGoogle Scholar
  15. Kultys, A., & Rogulska, M. (2011). New thermoplastic poly (carbonate-urethane) elastomers. Polish Journal of Chemical Technology, 13, 23–30. DOI: 10.2478/v10026-011-0005-x.CrossRefGoogle Scholar
  16. Kultys, A., Rogulska, M., & Głuchowska, H. (2011). The effect of soft-segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender. Polymer International, 60, 652–659. DOI: 10.1002/pi.2998.CrossRefGoogle Scholar
  17. Kuta, A., Hrdlička, Z., Strachota, A., & Špírková, M. (2009). The influence of macrodiol type on the mechanical properties of polyurethane materials. Materials and Manufacturing Processes, 24, 1214–1216. DOI: 10.1080/10426910902979553.CrossRefGoogle Scholar
  18. Ma, Z. W., Hong, Y., Nelson, D. M., Pichamuthu, J. E., Leeson, C. E., & Wagner, W. R. (2011). Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: Effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules, 12, 3265–3274. DOI: 10.1021/bm2007218.CrossRefGoogle Scholar
  19. Mourier, E., David, L., Alcouffe, P., Rochas, C., Méchin, F., & Fulchiron, R. (2011). Composition effects of thermoplastic segmented polyurethanes on their nanostructuring kinetics with or without preshear. Journal of Polymer Science Part B: Polymer Physics, 49, 801–811. DOI: 10.1002/polb.22251.CrossRefGoogle Scholar
  20. Oprea, S. (2011). Effect of the long chain extender on the properties of linear and castor oil cross-linked PEG-based polyurethane elastomers. Journal of Materials Science, 46, 2251–2258. DOI: 10.1007/s10853-010-5064-5.CrossRefGoogle Scholar
  21. Pavličević, J., Špírková, M., Strachota, A., Mészáros Szécsényi, K., Lazić, N., & Budinski-Simendić, J. (2010). The influence of montmorillonite and bentonite addition on thermal properties of polyurethanes based on aliphatic polycarbonate diols. Thermochimica Acta, 509, 73–80. DOI: 10.1016/j.tca.2010.06.005.CrossRefGoogle Scholar
  22. Poręba, R., Špírková, M., Brožová, L., Lazić, N., Pavličević, J., & Strachota, A. (2013). Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal, and gas transport properties. Journal of Applied Polymer Science, 127, 329–341. DOI: 10.1002/app.37895.CrossRefGoogle Scholar
  23. Prisacariu, C. (2011). Polyurethane elastomers. From morphology to mechanical aspects. Vienna, Austria: Springer. DOI: 10.1007/978-3-7091-0514-6.CrossRefGoogle Scholar
  24. Rogulska, M., Kultys, A., & Pikus, S. (2008). Studies on thermoplastic polyurethanes based on new diphenylethanederivative diols. III. The effect of molecular weight and structure of soft segment on some properties of segmented polyurethanes. Journal of Applied Polymer Science, 110, 1677–1689. DOI: 10.1002/app.28583.CrossRefGoogle Scholar
  25. Sonnenschein, M. F., Boyer, C., Brune, D., Wendt, B. L., Myers, G., & Landes, B. (2011). Chimeric plastics: A new class of thermoplastics. Macromolecules, 44, 865–871. DOI: 10.1021/ma102362b.CrossRefGoogle Scholar
  26. Špírková, M., Strachota, A., Urbanová, M., Baldrian, J., Brus, J., Šlouf, M., Kuta, A., & Hrdlička, Z. (2009). Structural and surface properties of novel polyurethane films. Materials and Manufacturing Processes, 24, 1185–1189. DOI: 10.1080/10426910902979686.CrossRefGoogle Scholar
  27. Špírková, M., Pavličević, J., Strachota, A., Poręba, R., Bera, O., Kaprálková, L., Baldrian, J., Šlouf, M., Lazić, N., & Budinski-Simendić, J. (2011). Novel polycarbonate-based polyurethane elastomers: Composition-property relationship. European Polymer Journal, 47, 959–972. DOI: 10.1016/j.eurpolymj.2011.01.001.CrossRefGoogle Scholar
  28. Špírková, M., Poręba, R., Pavličević, J., Kobera, L., Baldrian, J., & Pekárek, M. (2012). Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. Journal of Applied Polymer Science, 126, 1016–1030. DOI: 10.1002/app.36993.CrossRefGoogle Scholar
  29. Tanaka, H., & Kunimura, M. (2002). Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polymer Engineering & Science, 42, 1333–1349. DOI: 10.1002/pen.11035.CrossRefGoogle Scholar
  30. Vojtová, L., Kupka, V., Žídek, J., Wasserbauer, J., Sedláček, P., & Jančář, J. (2012). Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes. Chemical Papers, 66, 869–874. DOI: 10.2478/s11696-012-0176-9.CrossRefGoogle Scholar
  31. Zhu, G. Q., Wang, F. G., Gao, Q. C., Li, G. C., & Wang, P. (2011). Properties of poly(γ-benzyl L-glutamate) membrane modified by polyurtehane containing carboxyl group. Chemical Papers, 65, 483–489. DOI: 10.2478/s11696-011-0032-3.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Zdeněk Hrdlička
    • 1
    Email author
  • Antonín Kuta
    • 1
  • Rafał Poręba
    • 2
  • Milena Špírková
    • 2
  1. 1.Department of PolymersInstitute of Chemical Technology PraguePragueCzech Republic
  2. 2.Nanostructured Polymers and Composites DepartmentInstitute of Macromolecular Chemistry AS CRPragueCzech Republic

Personalised recommendations