Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 246–252 | Cite as

Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane

  • Guo-Quan Zhu
  • Fa-Gang WangEmail author
  • Hong-Sheng Tan
  • Qiao-Chun Gao
  • Yu-Ying Liu
Original Paper
  • 274 Downloads

Abstract

A number of poly(lactic acid-co-glycolic acid)/polyurethane (PLGA/PU) blend films with various PU mole contents were prepared by casting the polymer blend solution in chloroform. The surface morphologies of the PLGA/PU blend films were studied by scanning electron microscopy (SEM). The thermal, mechanical and chemical properties of the PLGA/PU blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests and surface contact angle tests. The results revealed that the introduction of PU could markedly modify the properties of PLGA films.

Keywords

morphology properties PLGA/PU blend film SEM DSC TGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. M., & Miller, K. M. (1984). Biomaterial biocompatibility and the macrophage. Biomaterials, 5, 5–10. DOI: 10.1016/0142-9612(84)90060-7.CrossRefGoogle Scholar
  2. Angelova, N., & Hunkeler, D. (1999). Rationalizing the design of polymeric biomaterials. Trends in Biotechnology, 17, 409–421. DOI: 10.1016/s0167-7799(99)01356-6.CrossRefGoogle Scholar
  3. Bai, L. Q., Zhu, L. J., Min, S. J., Liu, L., Cai, Y. R., & Yao, J. M. (2008). Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Applied Surface Science, 254, 2988–2995. DOI: 10.1016/j.apsusc.2007.10.049.CrossRefGoogle Scholar
  4. Bittner, B., Witt, C., Mäder, K., & Kissel, T. (1999). Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. Journal of Controlled Release, 60, 297–309. DOI: 10.1016/s0168-3659(99)00085-1.CrossRefGoogle Scholar
  5. Blanco-Príeto, M. J., Besseghir, K., Zerbe, O., Andris, D., Orsolini, P., Heimgartner, F., Merkle, H. P., & Gander, B. (2000). In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres. Journal of Controlled Release, 67, 19–28. DOI: 10.1016/s0168-3659(99)00289-8.CrossRefGoogle Scholar
  6. Cleland, J. L., Johnson, O. L., Putney, S., & Jones, A. J. S. (1997). Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Advanced Drug Delivery Reviews, 28, 71–84. DOI: 10.1016/s0169-409x(97)00051-3.CrossRefGoogle Scholar
  7. Elbert, D. L., & Hubbell, J. A. (1998). Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chemistry and Biology, 5, 177–183. DOI: 10.1016/s1074-5521(98)90062-x.CrossRefGoogle Scholar
  8. Ganji, F., & Abdekhodaie, M. J. (2010). Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydrate Polymers, 80, 740–746. DOI: 10.1016/j.carbpol.2009.12.021.CrossRefGoogle Scholar
  9. Göpferich, A., Peter, S. J., Lucke, A., Lu, L., & Mikos, A. G. (1999). Modulation of marrow stromal cell function using poly(d,l-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces. Journal of Biomedical Materials Research Part A, 46, 390–398. DOI: 10.1002/(SICI)1097-4636(19990905)46:3〈390::AID-JBM12〉3.0.CO;2-N.CrossRefGoogle Scholar
  10. Harjunalanen, T., & Lahtinen, M. (2003). The effects of altered reaction conditions on the properties of anionic poly(urethane-urea) dispersions and films cast from the dispersions. European Polymer Journal, 39, 817–824. DOI: 10.1016/s0014-3057(02)00279-3.CrossRefGoogle Scholar
  11. Holzer, M., Vogel, V., Mäntele, W., Schwartz, D., Haase, W., & Langer, K. (2009). Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. European Journal of Pharmaceutics and Biopharmaceutics, 72, 428–437. DOI: 10.1016/j.ejpb.2009.02.002.CrossRefGoogle Scholar
  12. Houchin, M. L., Neuenswander, S. A., & Topp, E. M. (2007). Effect of excipients on PLGA film degradation and the stability of an incorporated peptide. Journal of Controlled Release, 117, 413–420. DOI: 10.1016/j.jconrel.2006.11.023.CrossRefGoogle Scholar
  13. Ignatius, A. A., & Claes, L. E. (1996). In vitro biocompatibility of bioresorbable polymers: poly(l, dl-lactide) and poly(l-lactide-co-glycolide). Biomaterials, 17, 831–839. DOI: 10.1016/0142-9612(96)81421-9.CrossRefGoogle Scholar
  14. Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21, 2475–2490. DOI: 10.1016/s0142-9612(00)00115-0.CrossRefGoogle Scholar
  15. Jeong, J. H., Lim, D. W., Han, D. K., & Park, T. G. (2000). Synthesis, characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films. Colloids and Surfaces B: Biointerfaces, 18, 371–379. DOI: 10.1016/s0927-7765(99)00162-9.CrossRefGoogle Scholar
  16. Kondo, T., Sawatari, C., Manley, R. S. J., & Gray, D. G. (1994). Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively sub stituted methylcellulose. Macromolecules, 27, 210–215. DOI: 10.1021/ma00079a031.CrossRefGoogle Scholar
  17. Langer, R. (1995). 1994 Whitaker lecture: Polymers for drug delivery and tissue engineering. Annals of Biomedical Engineering, 23, 101–111. DOI: 10.1007/bf02368317.CrossRefGoogle Scholar
  18. Lio, K., Minoura, N., & Nagura, M. (1995). Swelling characteristics of a blend hydrogel made of poly(allylbiguanido-co-allylamine) and poly(vinyl alcohol). Polymer, 36, 2579–2583. DOI: 10.1016/0032-3861(95)91204-k.CrossRefGoogle Scholar
  19. Loo, S. C. J., Ooi, C. P., & Boey, Y. C. F. (2004). Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA). Polymer Degradation and Stability, 83, 259–265. DOI: 10.1016/s0141-3910(03)00271-4.CrossRefGoogle Scholar
  20. Loo, S. C. J., Ooi, C. P., Wee, S. H. E., & Boey, Y. C. F. (2005). Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials, 26, 2827–2833. DOI: 10.1016/j.biomaterials.2004.08.031.CrossRefGoogle Scholar
  21. Murakami, H., Kobayashi, M., Takeuchi, H., & Kawashima, Y. (2000). Utilization of poly(dl-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. Journal of Controlled Release, 67, 29–36. DOI: 10.1016/s0168-3659(99)00288-6.CrossRefGoogle Scholar
  22. Nishio, Y., & Manley, R. S. J. (1988). Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules, 21, 1270–1277. DOI: 10.1021/ma00183a016.CrossRefGoogle Scholar
  23. Park, J. S., Park, J. W., & Ruckenstein, E. (2001). Thermal and dynamic mechanical analysis of PVA/MC blend hydogels. Polymer, 42, 4271–4280. DOI: 10.1016/s0032-3861(00)00768-0.CrossRefGoogle Scholar
  24. Park, B. J., Seo, H. J., Kim, J., Kim, H. L., Kim, J. K., Choi, J. B., Han, I., Hyun, S. O., Chung, K. H., & Park, J. C. (2010). Cellular responses of vascular endothelial cells on surface modified polyurethane films grafted electospun PLGA fiber with microwave-induced plasma at atmospheric pressure. Surface & Coatings Technology, 205, s222–s226. DOI: 10.1016/j.surfcoat.2010.07.087.CrossRefGoogle Scholar
  25. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., & Zhang, J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual Review of Biomedical Engineering, 2, 9–29. DOI: 10.1146/annurev.bioeng.2.1.9.CrossRefGoogle Scholar
  26. Rowlands, A. S., Lim, S. A., Martin, D., & Cooper-White, J. J. (2007). Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials, 28, 2109–2121. DOI: 10.1016/j.biomaterials.2006.12.032.CrossRefGoogle Scholar
  27. Sawatari, C., & Kondo, T. (1999). Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules, 32, 1949–1955. DOI: 10.1021/ma980900o.CrossRefGoogle Scholar
  28. Schliecker, G., Schmidt, C., Fuchs, S., Wombacher, R., & Kissel, T. (2003). Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. International Journal of Pharmaceutics, 266, 39–49. DOI: 10.1016/s0378-5173(03)00379-x.CrossRefGoogle Scholar
  29. Steele, T. W. J., Huang, C. L., Widjaja, E., Boey, F. Y. C., Loo, J. S. C., & Venkatraman, S. S. (2011). The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomaterialia, 7, 1973–1983. DOI: 10.1016/j.actbio.2011.02.002.CrossRefGoogle Scholar
  30. Stolnik, S., Dunn, S. E., Garnett, M. C., Davies, M. C., Coombes, A. G. A., Taylor, D. C., Irving, M. P., Purkiss, S. C., Tadros, T. F., Davis, S. S., & Illum, L. (1994). Surface modification of poly (lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharmaceutical Research, 11, 1800–1808. DOI: 10.1023 /a:1018931820564.CrossRefGoogle Scholar
  31. Sung, C. S. P., Smith, T. W., & Sung, N. H. (1980). Properties of segmented polyether poly(urethaneureas) based of 2,4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules, 13, 117–121. DOI: 10.1021/ma60073a023.CrossRefGoogle Scholar
  32. Tanaka, H., Suzuki, Y., & Yoshino, F. (1999). Synthesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 153, 597–601. DOI: 10.1016/s0927-7757(98)00482-8.CrossRefGoogle Scholar
  33. Thanki, P. N., Dellacherie, E., & Six, J. L. (2006). Surface characteristics of PLA and PLGA films. Applied Surface Science, 253, 2758–2764. DOI: 10.1016/j.apsusc.2006.05.047.CrossRefGoogle Scholar
  34. Vey, E., Roger, C., Meehan, L., Booth, J., Claybourn, M., Miller, A. F., & Saiani, A. (2008). Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polymer Degradation and Stability, 93, 1869–1876. DOI: 10.1016/j.polymdegradstab.2008.07.018.CrossRefGoogle Scholar
  35. Yoon, S. D., Park, M. H., & Byun, H. S. (2012). Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methyl methacrylate-coacrylamide) particles. Carbohydrate Polymers, 87, 676–686. DOI: 10.1016/j.carbpol.2011.08.046.CrossRefGoogle Scholar
  36. Zhu, G. Q., Wang, F. G., Gao, Q. C., Li, G. C., & Wang, P. (2011). Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group. Chemical Papers, 65, 483–489. DOI: 10.2478/s11696-011-0032-3.CrossRefGoogle Scholar
  37. Zou, M. X., Wang, S. J., Zhang, Z. C., & Ge, X. W. (2005). Preparation and characterization of polysiloxane-poly(butyl acrylate-styrene) composite latices and their film properties. European Polymer Journal, 41, 2602–2613. DOI: 10.1016/j.eurpolymj.2005.05.038.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Guo-Quan Zhu
    • 1
  • Fa-Gang Wang
    • 1
    Email author
  • Hong-Sheng Tan
    • 1
  • Qiao-Chun Gao
    • 1
  • Yu-Ying Liu
    • 1
  1. 1.School of Materials Science and EngineeringShandong University of TechnologyZiboChina

Personalised recommendations