Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 197–202 | Cite as

Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic

  • Ondřej Zvěřina
  • Pavel Coufalík
  • Josef KomárekEmail author
  • Petr Gadas
  • Jiřina Sysalová
Original Paper

Abstract

An analysis of suspended particulate matter, with an emphasis on the Hg chemical forms, is presented. Dust samples originating from an area highly affected by traffic pollution in the city of Prague (Czech Republic) were sampled over a period of three years from air-conditioner filters and fractioned by size. The samples were morphologically characterised by scanning electron microscopy. The main method used for the analysis of constituent mercury compounds was sequential extraction by leaching solutions in combination with thermal desorption. The total mercury content ranged from 0.37 mg kg−1 to 0.82 mg kg−1. It emerged that the mercury was distributed in a wide spectrum of forms, and various trends in the distribution of these forms among the different size classes were observed. The fraction leached by nitric acid (consisting of elemental and complex-bound mercury) was the main constituent of total mercury. The highest content of this fraction was observed in the finest particle size class. The heterogeneity of morphology of the material increased with the size fraction.

Keywords

mercury sequential extraction thermal desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, R. (1982). The rank version of von Neumann’s ratio test for randomness. Journal of the American Statistical Association, 77(377), 40–46. DOI: 10.1080/01621459.1982.10477764.CrossRefGoogle Scholar
  2. Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479, 233–248. DOI: 10.1016/s0003-2670(02)01550-7.CrossRefGoogle Scholar
  3. Coufalík, P., Krásenský, P., Dosbaba, M., & Komárek, J. (2012). Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia. Central European Journal of Chemistry, 10, 1565–1573. DOI: 10.2478/s11532-012-0074-6.CrossRefGoogle Scholar
  4. Keeler, G., Glinsorn, G., & Pirrone, N. (1995). Particulate mercury in the atmosphere: Its significance, transport, transformation and sources. Water, Air, and Soil Pollution, 80, 159–168. DOI: 10.1007/bf01189664.CrossRefGoogle Scholar
  5. Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33, 2067–2079. DOI: 10.1016/s1352-2310(98)00387-2.CrossRefGoogle Scholar
  6. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X. B., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: A Journal of the Human Environment, 36, 19–33. DOI: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2.CrossRefGoogle Scholar
  7. Mason, R. P., Fitzgerald, W. F., & Morel, F. M. M. (1994). The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198. DOI: 10.1016/0016-7037(94)90046-9.CrossRefGoogle Scholar
  8. Nóvoa-Muñoz, J. C., Pontevedra-Pombal, X., Martínez-Cortizas, A., & García-Rodeja Gayoso, E. (2008). Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Science of the Total Environment, 394, 303–312. DOI: 10.1016/j.scitotenv.2008.01.044.CrossRefGoogle Scholar
  9. Olivieri, G., Novakovic, M., Savaskan, E., Meier, F., Baysang, G., Brockhaus, M., & Müller-Spahn, F. (2002). The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and β-amyloid secretion. Neuroscience, 113, 849–855. DOI: 10.1016/s0306-4522(02)00211-7.CrossRefGoogle Scholar
  10. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063. DOI: 10.1016/j.atmosenv.2006.03.041.CrossRefGoogle Scholar
  11. Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., & Maxson, P. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487–2499. DOI: 10.1016/j.atmosenv.2009.06.009.CrossRefGoogle Scholar
  12. Pandey, S. K., Kim, K. H., & Brown, R. J. C (2011). Measurement techniques for mercury species in ambient air. TrAC Trends in Analytical Chemistry, 30, 899–917. DOI: 10.1016/j.trac.2011.01.017.CrossRefGoogle Scholar
  13. Petersen, G., Munthe, J., Pleijel, K., & Bloxam, R., & Vinod Kumar, A. (1998). A comprehensive Eulerian modeling framework for airborne mercury species: Development and testing of the Tropospheric Chemistry Module (TCM). Atmospheric Environment, 32, 829–843. DOI: 10.1016/s1352-2310(97)00049-6.CrossRefGoogle Scholar
  14. Pirrone, N., & Mason, R. (Eds.) (2009). Mercury fate and transport in the global atmosphere. Dordrecht, The Netherlands: Springer. DOI: 10.1007/978-0-387-93958-2.Google Scholar
  15. Pleijel, K., & Munthe, J. (1995). Modelling the atmospheric mercury cycle-chemistry in fog droplets. Atmospheric Environment, 29, 1441–1457. DOI: 10.1016/1352-2310(94)00323-d.CrossRefGoogle Scholar
  16. Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury-An overview. Atmospheric Environment, 32, 809–822. DOI: 10.1016/s1352-2310(97)00293-8.CrossRefGoogle Scholar
  17. Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S., Prestbo, E., & Saxena, P. (1998). Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter. Atmospheric Environment, 32, 2649–2657. DOI: 10.1016/s1352-2310(97)00415-9.CrossRefGoogle Scholar
  18. Sysalová, J., Sýkorová, I., Havelcová, M., Száková, J., Trejtnarová, H., & Kotlík, B. (2012). Toxicologically important trace elements and organic compounds investigated in sizefractionated urban particulate matter collected near the Prague highway. Science of the Total Environment, 437, 127–136. DOI: 10.1016/j.scitotenv.2012.07.030.CrossRefGoogle Scholar
  19. Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfeldt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo, E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., & Tuncel, G. (2001). Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmospheric Environment, 35, 3019–3025. DOI: 10.1016/s1352-2310(01)00105-4.CrossRefGoogle Scholar
  20. Zahir, F., Rizwi, S. J., Haq, S. K., & Khan, R. H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20, 351–360. DOI: 10.1016/j.etap.2005.03.007.CrossRefGoogle Scholar
  21. Zvěřina, O., Červenka, R., Komárek, J., & Sysalová, J. (2013). Mercury characterisation in urban particulate matter. Chemical Papers, 67, 186–193. DOI: 10.2478/s11696-012-0259-7.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Ondřej Zvěřina
    • 1
  • Pavel Coufalík
    • 1
  • Josef Komárek
    • 1
    Email author
  • Petr Gadas
    • 2
  • Jiřina Sysalová
    • 3
  1. 1.Department of ChemistryMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.AAS LaboratoryInstitute of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations