Skip to main content
Log in

X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The structural characterisation of the molecule 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl] benzene obtained through Knoevenagel condensation is reported. The single crystals, as light brown rods, were cultured from a chloroform solution using a slow evaporation method at ambient temperature. The compound crystallised in the monoclinic system belonging to the C2/c space group with a = 26.4556(9) Å, b = 3.73562(10) Å, c = 18.4230(6) Å, β = 109.841(4)° and the asymmetric unit comprising Z = 4. The structure is ordered and the molecules of the title compound exhibited a lattice with water molecules located at sites of inversion and two-fold axial symmetries. Thus, only halves of the molecules are symmetrically independent. The lattice is reported and contrasted with X-ray single-crystal diffraction and theoretical calculations of 1,4-bis(1-cyano-2-phenylethenyl)benzene. By using density functional theory (DFT) and second order Moller-Plesset (MP2) theoretical calculations, the ground state geometry in the whole molecule at the B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) theory levels, respectively, were optimised. The DFT calculations showed a quasi-planar structure of the molecule, whereas the wave function-based MP2 method afforded a non-planar optimised structure with significant torsion angles between the pyridine and phenyl rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agilent Technologies (2012). CrysAlisPro (Version 1.171.36.20) [computer program]. Santa Clara, CA, USA: Agilent Technologies.

    Google Scholar 

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., & Taylor, R. (1987). Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, 1987, S1–S19. DOI: 10.1039/p298700000s1.

    Google Scholar 

  • Andrade, S. G., Gonçalves, L. C. S., & Jorge, F. E. (2008). Scaling factors for fundamental vibrational frequencies and zeropoint energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies. Journal of Molecular Structure: THEOCHEM, 864, 20–25. DOI: 10.1016/j.theochem.2008.05.025.

    Article  CAS  Google Scholar 

  • Bartholomew, G. P., Bazan, G. C., Bu, X. H., & Lachicotte, R. J. (2000). Packing modes of distyrylbenzene derivatives. Chemistry of Materials, 12, 1422–1430. DOI: 10.1021/ cm991194o.

    Article  CAS  Google Scholar 

  • Bartocci, G., Mazzucato, U., Masetti, F., & Galiazzo, G. (1980). Excited state reactivity of aza aromatics. 9. Fluorescence and photoisomerization of planar and hindered styrylpyridines. The Journal of Physical Chemistry, 84, 847–851. DOI: 10.1021/j100445a010.

    Article  CAS  Google Scholar 

  • Bartocci, G., & Mazzucato, U. (1982). Conformational equilibria and photophysical behaviour of styrylpyridines; excitation energy effects in fluid and rigid solutions. Journal of Luminescence, 27, 163–175. DOI: 10.1016/0022-2313(82)90018-7.

    Article  CAS  Google Scholar 

  • Bauschlicher, C. W., & Langhoff, S. R. (1997). The calculation of accurate harmonic frequencies of large molecules: the polycyclic aromatic hydrocarbons, a case study. Spectrochimica Acta Part A, 53, 1225–1240. DOI: 10.1016/s1386-1425(97)00022-x.

    Article  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.

    Article  CAS  Google Scholar 

  • Chapela, V. M., Percino, M. J., & Rodríguez-Barbarín, C. (2003). Crystal structure of 2,6-distyrylpyridine. Journal of Chemical Crystallography, 33, 77–83. DOI: 10.1023/a: 1023210422362.

    Article  CAS  Google Scholar 

  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724–728. DOI: 10.1063/1.1674902.

    Article  CAS  Google Scholar 

  • Enkeimann, V. (1998). In K. Müllen, & G. Wegner (Eds.), Electronic materials: The oligomer approach. Weinheim, Germany: Wiley.

  • Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Löglund, M., & Salaneck, W. R. (1999). Electroluminiscence in conjugated polymers. Nature, 397, 121–128. DOI: 10.1038/16393.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 [computer program]. Wallingford, CT, USA: Gaussian.

    Google Scholar 

  • Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799. DOI: 10.1002/jcc.20495.

    Article  CAS  Google Scholar 

  • Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., & Holmes, A. B. (1993). Efficient light-emitting diodes based on polymers with high electron affinities. Nature, 365, 628–630. DOI: 10.1038/365628a0.

    Article  CAS  Google Scholar 

  • Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1998). MP2 energy evaluation by direct methods. Chemical Physics Letters, 153, 503–506. DOI: 10.1016/0009-2614(88)85250-3.

    Article  Google Scholar 

  • Irngartinger, H., Lichtenthäler, J., & Herpich, R. (1994). Molecular structures and packing arrangements of five 2,5-bis(aryl-2-vinyl)-1,4-dimethoxybenzene derivatives. Structural Chemistry, 5, 283–289. DOI: 10.1007/bf02275501.

    Article  CAS  Google Scholar 

  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133–1138. DOI: 10.1103/physrev.140.a1133.

    Article  Google Scholar 

  • Lawson Daku, L. M., Linares, J., & Boillot, M. L. (2007). Ab initio static and molecular dynamics study of 4-styrylpyridine. ChemPhysChem, 8, 1402–1416. DOI: 10.1002/cphc.200700117.

    Article  Google Scholar 

  • Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into functional of the electron density. Physical Reviews B, 37, 785–789. DOI: 10.1103/physrevb.37.785.

    Article  CAS  Google Scholar 

  • Li, X. C., Sirringhaus, H., Garnier, F., Holmes, A. B., Moratti, S. C., Feeder, N., Clegg, W., Teat, S. J., & Friend, R. H. (1998). A highly π-stacked organic semiconductor for thin film transistors based on fused thiophenes. Journal of the American Chemical Society, 120, 2206–2207. DOI: 10.1021/ja9735968.

    Article  CAS  Google Scholar 

  • Mackie, I. D., & DiLabio, G. A. (2008). Interactions in large, polyaromatic hydrocarbon dimers: Application of density functional theory with dispersion corrections. The Journal of Physical Chemistry A, 112, 10968–10976. DOI: 10.1021/jp806162t.

    Article  CAS  Google Scholar 

  • Marri, E., Galiazzo, G., Mazzucato, U., & Spalletti, A. (2005). Excited state properties of cross-conjugated 1,2- and 1,3-distyrylbenzene and some aza-analogues. Chemical Physics, 312, 205–211. DOI: 10.1016/j.chemphys.2004.11.038.

    Article  CAS  Google Scholar 

  • Melendez, F. J., Urzúa, O., Percino, M. J., & Chapela, V. M. (2010). A theoretical study on three conformational structures of 2,6-distyrylpyridine. International Journal of Quantum Chemistry, 110, 838–849. DOI: 10.1002/qua.22024.

    CAS  Google Scholar 

  • Ośmiałowski, B., Kolehmainen, E., Nissinen, M., Krygowski, T. M., & Gawinecki, R. (2002). (1Z,3Z)-1,4-Di(pyridine-2-yl)buta-1,3-diene-2,3-diol: The planar highly conjugated symmetrical enediol with multiple intramolecular hydrogen bonds. The Journal of Organic Chemistry, 67, 3339–3345. DOI: 10.1021/jo016293b.

    Article  Google Scholar 

  • Percino, M. J., & Chapela, V. M. (1996). Poly(2,6-pyridinediylvinylene). In J. C. Salomone (Ed.), Polymeric materials encyclopedia (Vol. 9, pp. 6662–6670). New York, NY, USA: CRC Press. DOI: 0-8493-2470-x/96.

    Google Scholar 

  • Percino, M. J., Chapela, V. M., Romero, S., Rodríguez-Barbarín, C., & Melendez-Bustamante, F. J. (2006). Synthesis of 1,2-dimethoxy-1,2-di(pyridin-2-yl)-1,2-ethanediol: Crystal and molecular structure determination. Journal of Chemical Crystallography, 36, 303–308. DOI: 10.1007/s10870-005-9064-2.

    Article  CAS  Google Scholar 

  • Percino, M. J., Chapela, V. M., Montiel, L. F., Pérez-Gutiérrez, E., & Maldonado, J. L. (2010). Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent. Chemical Papers, 64, 360–367. DOI: 10.2478/s11696-010-0012-z.

    Article  CAS  Google Scholar 

  • Percino, M. J., Chapela, V. M., Pérez-Gutiérrez, E., Cerón, M., & Soriano, G. (2011). Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles. Chemical Papers, 65, 42–51. DOI: 10.2478/s11696-010-0075-x.

    Article  CAS  Google Scholar 

  • Percino, M. J., Chapela, V. M., Cerón, M., Castro, M. E., Soriano-Moreno, G., Pérez-Gutiérrez, E., & Meléndez-Bustamante, F. (2012). Synthesis and characterization of conjugated pyridine-(N-diphenylamino) acrylonitrile derivatives: Photophysical properties. Journal of Materials Science Research, 1, 181–192. DOI: 10.5539/jmsr.v1n2p181.

    Article  CAS  Google Scholar 

  • Pérez-Gutiérrez, E., Percino, M. J., Chapela, V. M., Cerón, M., Maldonado, J. L., & Ramos-Ortiz, G. (2011). Synthesis, characterization, and photophysical properties of pyridinecarbazole acrylonitrile derivatives. Materials, 4, 562–574. DOI: 10.3390/ma4030562.

    Article  Google Scholar 

  • Renak, M. L., Bartholomew, G. P., Wang, S., Ricatto, P. J., Lachicotte, R. J., & Bazan, G. C. (1999). Fluorinated distyrylbenzene chromophores: Effect of fluorine regiochemistry on molecular properties and solid-state organization. Journal of the American Chemical Society, 121, 7787–7799. DOI: 10.1021/ja984440q.

    Article  CAS  Google Scholar 

  • Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69–89. DOI: 10.1103/revmodphys.23.69.

    Article  CAS  Google Scholar 

  • Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3, 214–218. DOI: 10.1002/jcc.540030212.

    Article  CAS  Google Scholar 

  • Shedrick, G. M. (1997) SHELXTL97 and SHELXTL2008 [computer program]. Göttngen, Germany: University of Göttngen.

    Google Scholar 

  • Shetty, A. S., Liu, E. B., Lachicotte, R. J., & Jenekhe, S. A. (1999). X-ray crystal structures and photophysical properties of new conjugated oligoquinolines. Chemistry of Materials, 11, 2292–2295. DOI: 10.1021/cm981121p.

    Article  CAS  Google Scholar 

  • Simon, S., Duran, M., & Dannenberg, J. J. (1996). How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? Journal of Chemical Physics, 105, 11024–11031. DOI: 10.1063/1.472902.

    Article  CAS  Google Scholar 

  • Thanthiriwatte, K. S., Hohenstein, E. G., Burns, L. A., & Sherrill, C. D. (2011). Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. Journal of Chemical Theory and Computation, 7, 88–96. DOI: 10.1021/ct100469b.

    Article  CAS  Google Scholar 

  • van Hutten, P. F., Wildeman, J., Meetsma, A., & Hadziioannou, G. (1999). Molecular packing in unsubstituted semiconduction phenylenevinylene oligomer and polymer. Journal of the American Chemical Society, 121, 5910–5918. DOI: 10.1021/ja990934r.

    Article  Google Scholar 

  • Wadsworth, D. H., Schupp, O. E., Seus, E. J., & Ford, J. A. (1965). The stereochemistry of the phosphonate modification of the Wittig reaction. The Journal of Organic Chemistry, 30, 680–685. DOI: 10.1021/jo01014a005.

    Article  CAS  Google Scholar 

  • Wu, G., Jacobs, S., Lenstra, A. T. H., van Alsenoy, C., & Geise, H. J. (1996). 2,5-Dimethoxy-1,4-bis[2-(2,4-dimethoxyphenyl) ethenyl]benzene studied by quantum chemical calculations and single crystal X-ray diffraction. Journal of Computational Chemistry, 17, 1820–1835. DOI: 10.1002/(sici)1096-987x(199612).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Judith Percino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Percino, M.J., Castro, M.E., Ceron, M. et al. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene. Chem. Pap. 68, 272–282 (2014). https://doi.org/10.2478/s11696-013-0434-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0434-5

Keywords

Navigation