Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 272–282 | Cite as

X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene

  • M. Judith PercinoEmail author
  • Maria Eugenia Castro
  • Margarita Ceron
  • Guillermo Soriano-Moro
  • Victor M. Chapela
  • Francisco J. Melendez
Original Paper

Abstract

The structural characterisation of the molecule 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl] benzene obtained through Knoevenagel condensation is reported. The single crystals, as light brown rods, were cultured from a chloroform solution using a slow evaporation method at ambient temperature. The compound crystallised in the monoclinic system belonging to the C2/c space group with a = 26.4556(9) Å, b = 3.73562(10) Å, c = 18.4230(6) Å, β = 109.841(4)° and the asymmetric unit comprising Z = 4. The structure is ordered and the molecules of the title compound exhibited a lattice with water molecules located at sites of inversion and two-fold axial symmetries. Thus, only halves of the molecules are symmetrically independent. The lattice is reported and contrasted with X-ray single-crystal diffraction and theoretical calculations of 1,4-bis(1-cyano-2-phenylethenyl)benzene. By using density functional theory (DFT) and second order Moller-Plesset (MP2) theoretical calculations, the ground state geometry in the whole molecule at the B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) theory levels, respectively, were optimised. The DFT calculations showed a quasi-planar structure of the molecule, whereas the wave function-based MP2 method afforded a non-planar optimised structure with significant torsion angles between the pyridine and phenyl rings.

Keywords

cyano-substituted acrylonitrile compound X-ray structure molecular structure DFT and MP2 calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agilent Technologies (2012). CrysAlisPro (Version 1.171.36.20) [computer program]. Santa Clara, CA, USA: Agilent Technologies.Google Scholar
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., & Taylor, R. (1987). Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, 1987, S1–S19. DOI: 10.1039/p298700000s1.Google Scholar
  3. Andrade, S. G., Gonçalves, L. C. S., & Jorge, F. E. (2008). Scaling factors for fundamental vibrational frequencies and zeropoint energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies. Journal of Molecular Structure: THEOCHEM, 864, 20–25. DOI: 10.1016/j.theochem.2008.05.025.CrossRefGoogle Scholar
  4. Bartholomew, G. P., Bazan, G. C., Bu, X. H., & Lachicotte, R. J. (2000). Packing modes of distyrylbenzene derivatives. Chemistry of Materials, 12, 1422–1430. DOI: 10.1021/ cm991194o.CrossRefGoogle Scholar
  5. Bartocci, G., Mazzucato, U., Masetti, F., & Galiazzo, G. (1980). Excited state reactivity of aza aromatics. 9. Fluorescence and photoisomerization of planar and hindered styrylpyridines. The Journal of Physical Chemistry, 84, 847–851. DOI: 10.1021/j100445a010.CrossRefGoogle Scholar
  6. Bartocci, G., & Mazzucato, U. (1982). Conformational equilibria and photophysical behaviour of styrylpyridines; excitation energy effects in fluid and rigid solutions. Journal of Luminescence, 27, 163–175. DOI: 10.1016/0022-2313(82)90018-7.CrossRefGoogle Scholar
  7. Bauschlicher, C. W., & Langhoff, S. R. (1997). The calculation of accurate harmonic frequencies of large molecules: the polycyclic aromatic hydrocarbons, a case study. Spectrochimica Acta Part A, 53, 1225–1240. DOI: 10.1016/s1386-1425(97)00022-x.CrossRefGoogle Scholar
  8. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  9. Chapela, V. M., Percino, M. J., & Rodríguez-Barbarín, C. (2003). Crystal structure of 2,6-distyrylpyridine. Journal of Chemical Crystallography, 33, 77–83. DOI: 10.1023/a: 1023210422362.CrossRefGoogle Scholar
  10. Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724–728. DOI: 10.1063/1.1674902.CrossRefGoogle Scholar
  11. Enkeimann, V. (1998). In K. Müllen, & G. Wegner (Eds.), Electronic materials: The oligomer approach. Weinheim, Germany: Wiley.Google Scholar
  12. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Löglund, M., & Salaneck, W. R. (1999). Electroluminiscence in conjugated polymers. Nature, 397, 121–128. DOI: 10.1038/16393.CrossRefGoogle Scholar
  13. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 [computer program]. Wallingford, CT, USA: Gaussian.Google Scholar
  14. Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799. DOI: 10.1002/jcc.20495.CrossRefGoogle Scholar
  15. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., & Holmes, A. B. (1993). Efficient light-emitting diodes based on polymers with high electron affinities. Nature, 365, 628–630. DOI: 10.1038/365628a0.CrossRefGoogle Scholar
  16. Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1998). MP2 energy evaluation by direct methods. Chemical Physics Letters, 153, 503–506. DOI: 10.1016/0009-2614(88)85250-3.CrossRefGoogle Scholar
  17. Irngartinger, H., Lichtenthäler, J., & Herpich, R. (1994). Molecular structures and packing arrangements of five 2,5-bis(aryl-2-vinyl)-1,4-dimethoxybenzene derivatives. Structural Chemistry, 5, 283–289. DOI: 10.1007/bf02275501.CrossRefGoogle Scholar
  18. Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133–1138. DOI: 10.1103/physrev.140.a1133.CrossRefGoogle Scholar
  19. Lawson Daku, L. M., Linares, J., & Boillot, M. L. (2007). Ab initio static and molecular dynamics study of 4-styrylpyridine. ChemPhysChem, 8, 1402–1416. DOI: 10.1002/cphc.200700117.CrossRefGoogle Scholar
  20. Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into functional of the electron density. Physical Reviews B, 37, 785–789. DOI: 10.1103/physrevb.37.785.CrossRefGoogle Scholar
  21. Li, X. C., Sirringhaus, H., Garnier, F., Holmes, A. B., Moratti, S. C., Feeder, N., Clegg, W., Teat, S. J., & Friend, R. H. (1998). A highly π-stacked organic semiconductor for thin film transistors based on fused thiophenes. Journal of the American Chemical Society, 120, 2206–2207. DOI: 10.1021/ja9735968.CrossRefGoogle Scholar
  22. Mackie, I. D., & DiLabio, G. A. (2008). Interactions in large, polyaromatic hydrocarbon dimers: Application of density functional theory with dispersion corrections. The Journal of Physical Chemistry A, 112, 10968–10976. DOI: 10.1021/jp806162t.CrossRefGoogle Scholar
  23. Marri, E., Galiazzo, G., Mazzucato, U., & Spalletti, A. (2005). Excited state properties of cross-conjugated 1,2- and 1,3-distyrylbenzene and some aza-analogues. Chemical Physics, 312, 205–211. DOI: 10.1016/j.chemphys.2004.11.038.CrossRefGoogle Scholar
  24. Melendez, F. J., Urzúa, O., Percino, M. J., & Chapela, V. M. (2010). A theoretical study on three conformational structures of 2,6-distyrylpyridine. International Journal of Quantum Chemistry, 110, 838–849. DOI: 10.1002/qua.22024.Google Scholar
  25. Ośmiałowski, B., Kolehmainen, E., Nissinen, M., Krygowski, T. M., & Gawinecki, R. (2002). (1Z,3Z)-1,4-Di(pyridine-2-yl)buta-1,3-diene-2,3-diol: The planar highly conjugated symmetrical enediol with multiple intramolecular hydrogen bonds. The Journal of Organic Chemistry, 67, 3339–3345. DOI: 10.1021/jo016293b.CrossRefGoogle Scholar
  26. Percino, M. J., & Chapela, V. M. (1996). Poly(2,6-pyridinediylvinylene). In J. C. Salomone (Ed.), Polymeric materials encyclopedia (Vol. 9, pp. 6662–6670). New York, NY, USA: CRC Press. DOI: 0-8493-2470-x/96.Google Scholar
  27. Percino, M. J., Chapela, V. M., Romero, S., Rodríguez-Barbarín, C., & Melendez-Bustamante, F. J. (2006). Synthesis of 1,2-dimethoxy-1,2-di(pyridin-2-yl)-1,2-ethanediol: Crystal and molecular structure determination. Journal of Chemical Crystallography, 36, 303–308. DOI: 10.1007/s10870-005-9064-2.CrossRefGoogle Scholar
  28. Percino, M. J., Chapela, V. M., Montiel, L. F., Pérez-Gutiérrez, E., & Maldonado, J. L. (2010). Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent. Chemical Papers, 64, 360–367. DOI: 10.2478/s11696-010-0012-z.CrossRefGoogle Scholar
  29. Percino, M. J., Chapela, V. M., Pérez-Gutiérrez, E., Cerón, M., & Soriano, G. (2011). Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles. Chemical Papers, 65, 42–51. DOI: 10.2478/s11696-010-0075-x.CrossRefGoogle Scholar
  30. Percino, M. J., Chapela, V. M., Cerón, M., Castro, M. E., Soriano-Moreno, G., Pérez-Gutiérrez, E., & Meléndez-Bustamante, F. (2012). Synthesis and characterization of conjugated pyridine-(N-diphenylamino) acrylonitrile derivatives: Photophysical properties. Journal of Materials Science Research, 1, 181–192. DOI: 10.5539/jmsr.v1n2p181.CrossRefGoogle Scholar
  31. Pérez-Gutiérrez, E., Percino, M. J., Chapela, V. M., Cerón, M., Maldonado, J. L., & Ramos-Ortiz, G. (2011). Synthesis, characterization, and photophysical properties of pyridinecarbazole acrylonitrile derivatives. Materials, 4, 562–574. DOI: 10.3390/ma4030562.CrossRefGoogle Scholar
  32. Renak, M. L., Bartholomew, G. P., Wang, S., Ricatto, P. J., Lachicotte, R. J., & Bazan, G. C. (1999). Fluorinated distyrylbenzene chromophores: Effect of fluorine regiochemistry on molecular properties and solid-state organization. Journal of the American Chemical Society, 121, 7787–7799. DOI: 10.1021/ja984440q.CrossRefGoogle Scholar
  33. Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69–89. DOI: 10.1103/revmodphys.23.69.CrossRefGoogle Scholar
  34. Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3, 214–218. DOI: 10.1002/jcc.540030212.CrossRefGoogle Scholar
  35. Shedrick, G. M. (1997) SHELXTL97 and SHELXTL2008 [computer program]. Göttngen, Germany: University of Göttngen.Google Scholar
  36. Shetty, A. S., Liu, E. B., Lachicotte, R. J., & Jenekhe, S. A. (1999). X-ray crystal structures and photophysical properties of new conjugated oligoquinolines. Chemistry of Materials, 11, 2292–2295. DOI: 10.1021/cm981121p.CrossRefGoogle Scholar
  37. Simon, S., Duran, M., & Dannenberg, J. J. (1996). How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? Journal of Chemical Physics, 105, 11024–11031. DOI: 10.1063/1.472902.CrossRefGoogle Scholar
  38. Thanthiriwatte, K. S., Hohenstein, E. G., Burns, L. A., & Sherrill, C. D. (2011). Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. Journal of Chemical Theory and Computation, 7, 88–96. DOI: 10.1021/ct100469b.CrossRefGoogle Scholar
  39. van Hutten, P. F., Wildeman, J., Meetsma, A., & Hadziioannou, G. (1999). Molecular packing in unsubstituted semiconduction phenylenevinylene oligomer and polymer. Journal of the American Chemical Society, 121, 5910–5918. DOI: 10.1021/ja990934r.CrossRefGoogle Scholar
  40. Wadsworth, D. H., Schupp, O. E., Seus, E. J., & Ford, J. A. (1965). The stereochemistry of the phosphonate modification of the Wittig reaction. The Journal of Organic Chemistry, 30, 680–685. DOI: 10.1021/jo01014a005.CrossRefGoogle Scholar
  41. Wu, G., Jacobs, S., Lenstra, A. T. H., van Alsenoy, C., & Geise, H. J. (1996). 2,5-Dimethoxy-1,4-bis[2-(2,4-dimethoxyphenyl) ethenyl]benzene studied by quantum chemical calculations and single crystal X-ray diffraction. Journal of Computational Chemistry, 17, 1820–1835. DOI: 10.1002/(sici)1096-987x(199612).Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • M. Judith Percino
    • 1
    Email author
  • Maria Eugenia Castro
    • 1
  • Margarita Ceron
    • 1
  • Guillermo Soriano-Moro
    • 1
  • Victor M. Chapela
    • 1
  • Francisco J. Melendez
    • 2
  1. 1.Polymers Laboratory, Chemistry Center, Institute of SciencesAutonomous University of Puebla, Complex of Sciences, ICUAPPueblaMexico
  2. 2.Theoretical Chemistry Laboratory, Investigation Center, Department of Physical Chemistry, Faculty of Chemical SciencesAutonomous University of PueblaPuebla City, Pue.Mexico

Personalised recommendations