Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 164–169 | Cite as

Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water

  • Zhi Qiang Hou
  • Li Gang Luo
  • Chun Ze Liu
  • Yuan Yuan WangEmail author
  • Li Yi DaiEmail author
Original Paper
  • 187 Downloads

Abstract

The reaction between caprolactam and ethanol was performed in near-critical water. The primary product (ethyl-6-aminohexanoate) was identified by GC-MS. The influences of the reaction temperature, residence time, initial ratio (reactant/water), pH, and additives on the yields of ethyl-6-aminohexanoate are discussed. The results showed that the yield of ethyl-6-aminohexanoate could be as high as 98 % with SnCl2 as an additive in near-critical water. At the same time, the reaction between caprolactam and ethanol was estimated by a lumped kinetic equation as a second-order reaction in near-critical water, and the activation energy was evaluated according to the Arrhenius equation under acidic and basic conditions. Based on the results, the reaction mechanism between caprolactam and ethanol in near-critical water is proposed.

Keywords

near-critical water caprolactam ethanol ethyl-6-aminohexanoate kinetics mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulagatov, I. M., Bazaev, A. R., Bazaev, E. A., Saidakhmedova, M. B.,& Ramazanova, A. E. (1998). Volumetric properties of near-critical and supercritical water + pentane mixtures: Molar, excess, partial, and apparent volumes. Journal of Chemical & Engineering Data, 43, 451–458. DOI: 10.1021/je970287o.CrossRefGoogle Scholar
  2. Bicker, M., Endres, S., Ott, L.,& Vogel, H. (2005). Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. Journal of Molecular Catalysis A: Chemical, 239, 151–157. DOI: 10.1016/j.molcata.2005.06.017.CrossRefGoogle Scholar
  3. Chang, Y. J., Wang, Z. Z., Luo, L. G.,& Dai, L. Y. (2012). Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33–38. DOI: 10.2478/s11696-011-0093-3.CrossRefGoogle Scholar
  4. Delaney, E. J., Wood, L. E.,& Klotz, I. M. (1982). Poly(ethylenimines) with alternative (alkylamino)pyridines as nucleophilic catalysts. Journal of the American Chemical Society, 104, 799–807. DOI: 10.1021/ja00367a025.CrossRefGoogle Scholar
  5. Díez Pascual, A. M., Compostizo, A., Crespo-Colín, A., & Rubio, R. G. (2007). Bulk and interfacial properties of a cationic micellar system near the critical point. Chemical Physics, 335, 124–132. DOI: 10.1016/j.chemphys.2007.04.004.CrossRefGoogle Scholar
  6. Duan, P. G., Li, S., Yang, Y., Wang, Z. Z.,& Dai, L. Y. (2009). Green medium for the hydrolysis of 5-cyanovaleramide. Chemical Engineering & Technology, 32, 771–777. DOI: 10.1002/ceat.200800607.CrossRefGoogle Scholar
  7. He, M. X., Feng, D. C., Zhu, F.,& Cai, Z. T. (2004). Alcoholysis of N-methyl-1,2-thiazetidine-1,1-dioxide: DFT study of water and alcohol effects. The Journal of Physical Chemistry A, 108, 7702–7708. DOI: 10.1021/jp048374s.CrossRefGoogle Scholar
  8. Kao, C. C., Ghita, O. R., Hallam, K. R., Heard, P. J.,& Evans, K. E. (2012). Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water. Composites Part A: Applied Science and Manufacturing, 43, 398–427. DOI: 10.1016/j.compositesa.2011.11.011.CrossRefGoogle Scholar
  9. Kruse, A.,& Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39, 362–380. DOI: 10.1016/j.supflu.2006.03.016.CrossRefGoogle Scholar
  10. Liu, C.,& Tobita, K. (2010). Hydraulic analysis of the water-cooled blanket based on the sub-critical water condition. Fusion Engineering and Design, 85, 979–982. DOI: 10.1016/j.fusengdes.2009.11.004.CrossRefGoogle Scholar
  11. Mi, J. L., Christensen, M., Tyrsted, C., Jensen, K.J., Hald, P.,& Iversen, B. B. (2010). Formation and growth of Bi2Te3 in biomolecule-assisted near-critical water: In situ synchrotron radiation study. The Journal of Physical Chemistry C, 114, 12133–12138. DOI: 10.1021/jp103858z.CrossRefGoogle Scholar
  12. Pacher, T., Raninger, A., Lorbeer, E., Brecker, L., But, P. P. H.,& Greger, H. (2010). Alcoholysis of naturally occurring imides: Misleading interpretation of antifungal activities. Journal of Natural Products, 73, 1389–1393. DOI: 10.1021/np1003092.CrossRefGoogle Scholar
  13. Rana, M. K.,& Chandra, A. (2012). Solvation structure of nanoscopic hydrophobic solutes in supercritical water: Results for varying thickness of hydrophobic walls, solute-solvent interaction and solvent density. Chemical Physics, 408, 28–35. DOI: 10.1016/j.chemphys.2012.09.008.CrossRefGoogle Scholar
  14. Riemenschneider, W., & Bolt, H. M. (2005). Esters, organic. In Ullmann’s encyclopedia of industrial chemistry. New York, NY, USA: Wiley. DOI: 10.1002/14356007.a09 565.pub2.Google Scholar
  15. Szajna, E., Makowska-Grzyska, M. M., Wasden, C. C., Arif, A. M.,& Berreau, L. M. (2005). A deprotonated intermediate in the amide methanolysis reaction of an N4O-ligated mononuclear zinc complex. Inorganic Chemistry, 44, 7595–7605. DOI: 10.1021/ic050750f.CrossRefGoogle Scholar
  16. Vieitez, I., da Silva, C., Alckmin, I., Borges, G. R., Corazza, F. C., Oliveira, J. V., Grompone, M. A., & Jachmanián, I. (2010). Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renewable Energy, 35, 1976–1981. DOI: 10.1016/j.renene.2010.01.027.CrossRefGoogle Scholar
  17. Watanabe, M., Sato, T., Ionmata, H., Smith, R. L., Jr., Arai, K., Kruse, A.,& Dinjus, E. (2004). Chemical reactions of C1 compounds in near-vritical and supercritical water. Chemical Reviews, 104, 5803–5822. DOI: 10.1021/cr020415y.CrossRefGoogle Scholar
  18. Watanabe, M., Iida, T., Aizawa, Y., Aida, T. M.,& Inomata, H. (2007). Acrolein synthesis from glycerol in hotcompressed water. Bioresource Technology, 98, 1285–1290. DOI: 10.1016/j.biortech.2006.05.007.CrossRefGoogle Scholar
  19. Yuksel, A., Sasaki, M.,& Goto, M. (2011). Complete degradation of Orange G by electrolysis in sub-critical water. Journal of Hazardous Materials, 190, 1058–1062. DOI: 10.1016/j.jhazmat.2011.02.083.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of ChemistryEast China Normal UniversityShanghaiChina

Personalised recommendations