Skip to main content
Log in

Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The reaction between caprolactam and ethanol was performed in near-critical water. The primary product (ethyl-6-aminohexanoate) was identified by GC-MS. The influences of the reaction temperature, residence time, initial ratio (reactant/water), pH, and additives on the yields of ethyl-6-aminohexanoate are discussed. The results showed that the yield of ethyl-6-aminohexanoate could be as high as 98 % with SnCl2 as an additive in near-critical water. At the same time, the reaction between caprolactam and ethanol was estimated by a lumped kinetic equation as a second-order reaction in near-critical water, and the activation energy was evaluated according to the Arrhenius equation under acidic and basic conditions. Based on the results, the reaction mechanism between caprolactam and ethanol in near-critical water is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulagatov, I. M., Bazaev, A. R., Bazaev, E. A., Saidakhmedova, M. B.,& Ramazanova, A. E. (1998). Volumetric properties of near-critical and supercritical water + pentane mixtures: Molar, excess, partial, and apparent volumes. Journal of Chemical & Engineering Data, 43, 451–458. DOI: 10.1021/je970287o.

    Article  CAS  Google Scholar 

  • Bicker, M., Endres, S., Ott, L.,& Vogel, H. (2005). Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. Journal of Molecular Catalysis A: Chemical, 239, 151–157. DOI: 10.1016/j.molcata.2005.06.017.

    Article  CAS  Google Scholar 

  • Chang, Y. J., Wang, Z. Z., Luo, L. G.,& Dai, L. Y. (2012). Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33–38. DOI: 10.2478/s11696-011-0093-3.

    Article  CAS  Google Scholar 

  • Delaney, E. J., Wood, L. E.,& Klotz, I. M. (1982). Poly(ethylenimines) with alternative (alkylamino)pyridines as nucleophilic catalysts. Journal of the American Chemical Society, 104, 799–807. DOI: 10.1021/ja00367a025.

    Article  CAS  Google Scholar 

  • Díez Pascual, A. M., Compostizo, A., Crespo-Colín, A., & Rubio, R. G. (2007). Bulk and interfacial properties of a cationic micellar system near the critical point. Chemical Physics, 335, 124–132. DOI: 10.1016/j.chemphys.2007.04.004.

    Article  Google Scholar 

  • Duan, P. G., Li, S., Yang, Y., Wang, Z. Z.,& Dai, L. Y. (2009). Green medium for the hydrolysis of 5-cyanovaleramide. Chemical Engineering & Technology, 32, 771–777. DOI: 10.1002/ceat.200800607.

    Article  CAS  Google Scholar 

  • He, M. X., Feng, D. C., Zhu, F.,& Cai, Z. T. (2004). Alcoholysis of N-methyl-1,2-thiazetidine-1,1-dioxide: DFT study of water and alcohol effects. The Journal of Physical Chemistry A, 108, 7702–7708. DOI: 10.1021/jp048374s.

    Article  CAS  Google Scholar 

  • Kao, C. C., Ghita, O. R., Hallam, K. R., Heard, P. J.,& Evans, K. E. (2012). Mechanical studies of single glass fibres recycled from hydrolysis process using sub-critical water. Composites Part A: Applied Science and Manufacturing, 43, 398–427. DOI: 10.1016/j.compositesa.2011.11.011.

    Article  CAS  Google Scholar 

  • Kruse, A.,& Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39, 362–380. DOI: 10.1016/j.supflu.2006.03.016.

    Article  CAS  Google Scholar 

  • Liu, C.,& Tobita, K. (2010). Hydraulic analysis of the water-cooled blanket based on the sub-critical water condition. Fusion Engineering and Design, 85, 979–982. DOI: 10.1016/j.fusengdes.2009.11.004.

    Article  CAS  Google Scholar 

  • Mi, J. L., Christensen, M., Tyrsted, C., Jensen, K.J., Hald, P.,& Iversen, B. B. (2010). Formation and growth of Bi2Te3 in biomolecule-assisted near-critical water: In situ synchrotron radiation study. The Journal of Physical Chemistry C, 114, 12133–12138. DOI: 10.1021/jp103858z.

    Article  CAS  Google Scholar 

  • Pacher, T., Raninger, A., Lorbeer, E., Brecker, L., But, P. P. H.,& Greger, H. (2010). Alcoholysis of naturally occurring imides: Misleading interpretation of antifungal activities. Journal of Natural Products, 73, 1389–1393. DOI: 10.1021/np1003092.

    Article  CAS  Google Scholar 

  • Rana, M. K.,& Chandra, A. (2012). Solvation structure of nanoscopic hydrophobic solutes in supercritical water: Results for varying thickness of hydrophobic walls, solute-solvent interaction and solvent density. Chemical Physics, 408, 28–35. DOI: 10.1016/j.chemphys.2012.09.008.

    Article  CAS  Google Scholar 

  • Riemenschneider, W., & Bolt, H. M. (2005). Esters, organic. In Ullmann’s encyclopedia of industrial chemistry. New York, NY, USA: Wiley. DOI: 10.1002/14356007.a09 565.pub2.

    Google Scholar 

  • Szajna, E., Makowska-Grzyska, M. M., Wasden, C. C., Arif, A. M.,& Berreau, L. M. (2005). A deprotonated intermediate in the amide methanolysis reaction of an N4O-ligated mononuclear zinc complex. Inorganic Chemistry, 44, 7595–7605. DOI: 10.1021/ic050750f.

    Article  CAS  Google Scholar 

  • Vieitez, I., da Silva, C., Alckmin, I., Borges, G. R., Corazza, F. C., Oliveira, J. V., Grompone, M. A., & Jachmanián, I. (2010). Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renewable Energy, 35, 1976–1981. DOI: 10.1016/j.renene.2010.01.027.

    Article  CAS  Google Scholar 

  • Watanabe, M., Sato, T., Ionmata, H., Smith, R. L., Jr., Arai, K., Kruse, A.,& Dinjus, E. (2004). Chemical reactions of C1 compounds in near-vritical and supercritical water. Chemical Reviews, 104, 5803–5822. DOI: 10.1021/cr020415y.

    Article  CAS  Google Scholar 

  • Watanabe, M., Iida, T., Aizawa, Y., Aida, T. M.,& Inomata, H. (2007). Acrolein synthesis from glycerol in hotcompressed water. Bioresource Technology, 98, 1285–1290. DOI: 10.1016/j.biortech.2006.05.007.

    Article  CAS  Google Scholar 

  • Yuksel, A., Sasaki, M.,& Goto, M. (2011). Complete degradation of Orange G by electrolysis in sub-critical water. Journal of Hazardous Materials, 190, 1058–1062. DOI: 10.1016/j.jhazmat.2011.02.083.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Yuan Wang or Li Yi Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Z.Q., Luo, L.G., Liu, C.Z. et al. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water. Chem. Pap. 68, 164–169 (2014). https://doi.org/10.2478/s11696-013-0433-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0433-6

Keywords

Navigation