Chemical Papers

, Volume 68, Issue 2, pp 153–163 | Cite as

Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid

  • Diganta Kumar DasEmail author
  • Babita Sarma
  • Sangita Haloi
Original Paper


A new binuclear complex of copper2+, [LCu2+(CH3COO)2Cu2+L](CH3COO)2 where L is N,N-bis(phthalimide)ethylenediamine, was synthesised and characterised. The complex ion [LCu2+ (CH3COO)2Cu2+L]2+ was encapsulated into ZSM-5 zeolite and used to modify the surface of the glassy carbon electrode. This modified electrode, in a phosphate buffer solution at pH 7.0, exhibited an oxidation potential for dopamine (DA) and ascorbic acid (AA) at electrode potentials of 0.230 V and −0.090 V vs. Ag/AgCl respectively, a separation of 0.320 V. The electro-oxidation of DA or AA on the modified electrode is independent of each other. No interference was observed from Na+, K+, Cl, SO 4 2− , Mg2+, Ca2+, Zn2+, Fe2+, and glucose. The detection limits obtained were 2.91 × 10−7 M for DA and 3.5 × 10−7 M for AA.


ascorbic acid dopamine ZSM-5 zeolite voltammetry sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, S. R., Ma, Y. F., Parajuli, R. R., Balogan, Y., Lai, W. Y. C., & He, H. X. (2007). A nonoxidative sensor based on a self-doped polyanilline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Analytical Chemistry, 79, 2583–2587. DOI: 10.1021/ac062068o.CrossRefGoogle Scholar
  2. Ardakani, M. M., Sheikh-Mohseni, M. A., Abdollahi-Alibaik, M., & Benvidi, A. (2012). Electrochemical sensors for simultaneous determination of norpinephrine, paracetamol and folic acid by a nonstructural mesoporous material. Sensors and Actuators B: Chemical, 171–172, 380–386. DOI: 10.1016/j.snb.2012.04.071.CrossRefGoogle Scholar
  3. Arrigoni, O., & De Tullio, M. C. (2002). Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta, 1569, 1–9. DOI: 10.1016/s0304-4165(01)00235-5.CrossRefGoogle Scholar
  4. Babaei, A., Zendehdel, M., Khaliljadeh, B., & Abnosi, M. (2010). A new sensor for simultanious determination of tyrosine and dopamine using iron(III) doped zeolite modified carbon paste electrode. Chinese Journal of Chemistry, 28, 1967–1972. DOI: 10.1002/cjoc.201090328.CrossRefGoogle Scholar
  5. Bustos, E. B., Jiménez, M.G. G., Díaz-Sánchez, B. R., Juaristi, E., Chapman, T. W., & Godínez, L. A. (2007). Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine. Talanta, 72, 1586–1592. DOI: 10.1016/j.talanta.2007.02.017.CrossRefGoogle Scholar
  6. Cao, X. H., Zhang, L. X., Cai, W. P., & Li, Y. Q. (2010). Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode. Electrochemistry Communications, 12, 540–543. DOI: 10.1016/j.elecom.2010.01.038.CrossRefGoogle Scholar
  7. Chandra, U., Kumara Swamy, B. E., Gilbert, O., Shankar, S. S., Mahanthesha, K. R., & Sherigara, B. S. (2010). Electrocatalytic oxidation of dopamine at chemically modified carbon paste electrode with 2,4-dinitrophenyl hydrazine. International Journal of Electrochemical Science, 5, 1–9.Google Scholar
  8. Cardero-Rando, M. M., Rodríguez, I. N., & de Cisneros, J. L. H. H. (1998). Voltammetric study of 2-methyl-4,6-dinitrophenol at a modified carbon paste electrode. Analytica Chimica Acta, 370, 231–238. DOI: 10.1016/s0003-2670(98)00262-1.CrossRefGoogle Scholar
  9. Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). The substantia nigra of the human brain II. Patterns of loss of dopamine-containg neurons in Parkinson’s disease. Brain, 122, 1437–1448. DOI: 10.1093/brain/122.8.1437.Google Scholar
  10. Dayton, M. A., Ewing, A. G., & Wightman, R. M. (1980). Response of microvoltammetric electrodes to homogeneous catalysis and slow heterogeneous charge-transfer reactions. Analytical Chemistry, 52, 2392–2396. DOI: 10.1021/ac50064 a035.CrossRefGoogle Scholar
  11. Dong, J. P., Zhou, X. J., Zhao, H. B., Xu, J. Q., & Sum, Y. B. (2011). Reagentless amperometric glucose biosensor based on the immobilization of glucose oxidase on a ferrocene@NaY zeolite composite. Microchimica Acta, 174, 281–288. DOI: 10.1007/s00604-011-0624-1.CrossRefGoogle Scholar
  12. Dursun, Z., & Nişli, G. (2004). Voltammetric behaviour of copper( I)oxide modified carbon paste electrode in the presence of cysteine and ascorbic acid. Talanta, 63, 873–878. DOI: 10.1016/j.talanta.2003.12.049.CrossRefGoogle Scholar
  13. Gopalan, A. I., Lee, K. P., Manesh, K. M., Santhosh, P., Kim, J. H., & Kang, J. S. (2007). Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta, 71, 1774–1781. DOI: 10.1016/j.talanta.2006.08.026.CrossRefGoogle Scholar
  14. Guirado, A., Zapata, A., & de Arellano, M. C. R. (1997). The reaction of phthalidylidene dichloride with primary amines. Synthesis and X-ray molecular structure of Nsubstituted phthalisoimides. Tetrahedron, 53, 5305–5324. DOI: 10.1016/s0040-4020(97)00194-4.Google Scholar
  15. Kalita, B., & Talukdar, A. K. (2009). An efficient synthesis of nanocrystalline MFI zeolite using different silica sources: A green approach. Materials Research Bulletin, 44, 254–258. DOI: 10.1016/j.materresbull.2008.06.014.CrossRefGoogle Scholar
  16. Li, Y. X., Huang, X., Chen, Y. L., Wang, L., & Lin, X. Q. (2009). Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchimica Acta, 164, 107–112. DOI: 10.1007/s00604-008-0040-3.CrossRefGoogle Scholar
  17. Lin, X. H., Zhang, Y. F., Chen, W., & Wu, P. (2007). Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly(p-nitrobenzenazo resorcinol) modified glassy carbon electrode. Sensors and Actuators B: Chemical, 122, 309–314. DOI: 10.1016/j.snb.2006.06.004.CrossRefGoogle Scholar
  18. Liu, A. H., Honma, I., & Zhou, H. S. (2007). Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosenors and Bioelectronics, 23, 74–80. DOI: 10.1016/j.bios.2007.03.019.CrossRefGoogle Scholar
  19. Marko-Varga, G., Burested, E., Svensson, C. J., Emnéus, J., Gorton, L., Ruzgas, T., Lutz, M., & Unger, K. K. (1996). Effect of HY-zeolite on the performance of tyrocinase-modified carbon paste electrodes. Electroanalysis, 8, 1121–1126. DOI: 10.1002/elan.1140081209.CrossRefGoogle Scholar
  20. Martin, C. (1998). The Parkinson’s puzzle: New developments in our understanding of Parkinson’s disease have generated a number of promising new treatments for this disabling condition. Chemistry in Britain, 34(9), 40–42.Google Scholar
  21. Mazloum-Ardakani, M., Akrami, Z., Kazemian, H., & Zare, H. R. (2009). Preconcentration and electroanalysis of copper at zeolite modified carbon paste electrode. International Journal of Electrochemical Science, 4, 308–319.Google Scholar
  22. Molina, A., Villavicencio, C., & Fernández, L. (2009). Evaluation of a glassy carbon electrode modified with zeolite “A” in adsorption of 2-chlorophenol. Avances en Química, 4, 63–72. (in Spanish)Google Scholar
  23. Neves, I., Freire, C., Zakhárov, A. N., de Castro, B., & Figueiredo, J. L. (1996). Zeolite-encapsulated copper (II) complexes with N3O2 Schiff bases: synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 115, 249–256. DOI: 10.1016/0927-7757(96)03596-0.CrossRefGoogle Scholar
  24. Rajbongshi, J., Das, D. K., & Mazumdar, S. (2010). Direct electrochemistry of dinuclear CuA fragment from cytochrome c oxidase of Thermus thermophilus at surfactant modified glassy carbon electrode. Electrochimica Acta, 55, 4174–4179. DOI: 10.1016/j.electacta.2010.02.045.CrossRefGoogle Scholar
  25. Raoof, J. B., Ojani, R., & Rashid-Nadimi, S. (2005). Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochimica Acta, 50, 4694–4698. DOI: 10.1016/j.electacta.2005.03.002.CrossRefGoogle Scholar
  26. Rohani, T., & Taher, M. A. (2009). A new method for electrocatalytic oxidation of ascorbic acid at the Cu(II) zeolitemodified electrode. Talanta, 78, 743–747. DOI: 10.1016/j. talanta.2008.12.041.CrossRefGoogle Scholar
  27. Rohr, O., Sawaya, B. E., Lecestre, D., Aunis, D., & Schaeffer, E. (1999). Dopamine stimulates expression of the human immunodeficiency virus type 1 via NF-κB in cells of the immune system. Nucleic Acids Research, 27, 3291–3299. DOI: 10.1093/nar/27.16.3291.CrossRefGoogle Scholar
  28. Rolison, D. R. (1990). Zeolite-modified electrodes and electrodemodified zeolites. Chemical Reviews, 90, 867–878. DOI: 10.1021/cr00103a011.CrossRefGoogle Scholar
  29. Rover Júnior, L., Fernandes, J. C. B., de Oliviera-Neto, G., & Kubota, L. T. (2000). Development of a new FIA-potentiometric sensor for dopamine based on EVA-copper(II) ions. Journal of Electroanalytical Chemistry, 481, 34–41. DOI: 10.1016/s0022-0728(99)00474-x.CrossRefGoogle Scholar
  30. Senthikumar, S., & Saraswathi, R. (2009). Electrochemical sensing of cadmium and lead ions at zeolite — modified electrodes: Optimization and field measurements. Sensors and Actuators B: Chemical, 141, 65–75. DOI: 10.1016/j.snb.2009.05.029.CrossRefGoogle Scholar
  31. Shahrokhian, S., & Karimi, M. (2004). Voltammetric studies of a cobalt(II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid. Electrochimica Acta, 50, 77–84. DOI: 10.1016/j.electacta.2004.07.015.CrossRefGoogle Scholar
  32. Sotomayor, M. D. P. T., Tanaka, A. A., & Kubota, L. T. (2002). Development of an amperometric sensor for phenol compounds using a Nafion membrane doped with copper dipyridyl complex as a biomimetic catalyst. Journal of Electroanalytical Chemistry, 536, 71–81. DOI: 10.1016/s0022-0728(02)01205-6.CrossRefGoogle Scholar
  33. Suzuki, A., Ivandini, T. A., Yoshimi, K., Fujishima, A., Oyama, G., Nakazato, T., Hattori, N., Kitazawa, S., & Einaga, Y. (2007). Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Analytical Chemistry, 79, 8608–8615. DOI: 10.1021/ac071519h.CrossRefGoogle Scholar
  34. Volkov, A., Tourillon, G., Lacaze, P. C., & Dubois, J. E. (1980). Electrochemical polymerization of aromatic amines: IR, XPS and PMT study of thin film formation on a Pt electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 115, 279–291. DOI: 10.1016/s0022-0728(80)80332-9.CrossRefGoogle Scholar
  35. Walcarius, A. (1999). Zeolite modified electrodes in electroanalytical chemistry. Analytica Chimica Acta, 384, 1–16. DOI: 10.1016/s0003-2670(98)00849-6.CrossRefGoogle Scholar
  36. Wang, J., & Walcarius, A. (1996a). Zeolite containing oxidasebased carbon paste biosensor. Journal of Electroanalytical Chemistry, 404, 237–242. DOI: 10.1016/0022-0728(95)04357-8.CrossRefGoogle Scholar
  37. Wang, J., & Walcarius, A. (1996b). Zeolite-modified carbon paste elctrode for selective monitoring of dopamine. Journal of Electroanalytical Chemistry, 407, 183–187. DOI: 10.1016/0022-0728(95)04488-4.CrossRefGoogle Scholar
  38. Wang, M. G., Xu, X. G., & Gao, J. (2007). Voltammetric studies of a novel bicopper complex modified glassy carbon electrode for the simultaneous determination of dopamine and ascorbic acid. Journal of Applied Electrochemistry, 37, 705–710. DOI: 10.1007/s10800-007-9303-7.CrossRefGoogle Scholar
  39. Wang, G. F., Sun, J. G., Zhang, W., Jiao, S. F., & Fang, B. (2009). Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchimica Acta, 164, 357–362. DOI: 10.1007/s00604-008-0066-6.CrossRefGoogle Scholar
  40. Wightman, R. M., May, L. J., & Michael, A. C. (1988). Detection of dopamine dynamics in brain. Analytical Chemistry, 60, 769A–779A. DOI: 10.1021/ac00164a718.Google Scholar
  41. Wu, W., Zhu, H. R., Fan, L. Z., Liu, D. F., Renneberg, R., & Yang, S. H. (2007). Sensitive dopamine recognition by boronic acid functionalized multiwalled carbon nanotubes. Chemical Communications, 23, 2345–2347. DOI: 10.1039/b701254c.CrossRefGoogle Scholar
  42. Xiao, Y. H., Guo, C. X., Li, C. M., Li, Y. B., Zhang, J., Xue, R. H., & Zhang, S. (2007). Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film. Analytical Biochemistry, 371, 229–237. DOI: 10.1016/j.ab.2007.07.025.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Diganta Kumar Das
    • 1
    Email author
  • Babita Sarma
    • 1
  • Sangita Haloi
    • 1
  1. 1.Department of ChemistryGauhati UniversityGuwahatiIndia

Personalised recommendations