Skip to main content

Advertisement

Log in

Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A new binuclear complex of copper2+, [LCu2+(CH3COO)2Cu2+L](CH3COO)2 where L is N,N-bis(phthalimide)ethylenediamine, was synthesised and characterised. The complex ion [LCu2+ (CH3COO)2Cu2+L]2+ was encapsulated into ZSM-5 zeolite and used to modify the surface of the glassy carbon electrode. This modified electrode, in a phosphate buffer solution at pH 7.0, exhibited an oxidation potential for dopamine (DA) and ascorbic acid (AA) at electrode potentials of 0.230 V and −0.090 V vs. Ag/AgCl respectively, a separation of 0.320 V. The electro-oxidation of DA or AA on the modified electrode is independent of each other. No interference was observed from Na+, K+, Cl, SO 2−4 , Mg2+, Ca2+, Zn2+, Fe2+, and glucose. The detection limits obtained were 2.91 × 10−7 M for DA and 3.5 × 10−7 M for AA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, S. R., Ma, Y. F., Parajuli, R. R., Balogan, Y., Lai, W. Y. C., & He, H. X. (2007). A nonoxidative sensor based on a self-doped polyanilline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Analytical Chemistry, 79, 2583–2587. DOI: 10.1021/ac062068o.

    Article  CAS  Google Scholar 

  • Ardakani, M. M., Sheikh-Mohseni, M. A., Abdollahi-Alibaik, M., & Benvidi, A. (2012). Electrochemical sensors for simultaneous determination of norpinephrine, paracetamol and folic acid by a nonstructural mesoporous material. Sensors and Actuators B: Chemical, 171–172, 380–386. DOI: 10.1016/j.snb.2012.04.071.

    Article  Google Scholar 

  • Arrigoni, O., & De Tullio, M. C. (2002). Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta, 1569, 1–9. DOI: 10.1016/s0304-4165(01)00235-5.

    Article  CAS  Google Scholar 

  • Babaei, A., Zendehdel, M., Khaliljadeh, B., & Abnosi, M. (2010). A new sensor for simultanious determination of tyrosine and dopamine using iron(III) doped zeolite modified carbon paste electrode. Chinese Journal of Chemistry, 28, 1967–1972. DOI: 10.1002/cjoc.201090328.

    Article  CAS  Google Scholar 

  • Bustos, E. B., Jiménez, M.G. G., Díaz-Sánchez, B. R., Juaristi, E., Chapman, T. W., & Godínez, L. A. (2007). Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine. Talanta, 72, 1586–1592. DOI: 10.1016/j.talanta.2007.02.017.

    Article  CAS  Google Scholar 

  • Cao, X. H., Zhang, L. X., Cai, W. P., & Li, Y. Q. (2010). Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode. Electrochemistry Communications, 12, 540–543. DOI: 10.1016/j.elecom.2010.01.038.

    Article  CAS  Google Scholar 

  • Chandra, U., Kumara Swamy, B. E., Gilbert, O., Shankar, S. S., Mahanthesha, K. R., & Sherigara, B. S. (2010). Electrocatalytic oxidation of dopamine at chemically modified carbon paste electrode with 2,4-dinitrophenyl hydrazine. International Journal of Electrochemical Science, 5, 1–9.

    CAS  Google Scholar 

  • Cardero-Rando, M. M., Rodríguez, I. N., & de Cisneros, J. L. H. H. (1998). Voltammetric study of 2-methyl-4,6-dinitrophenol at a modified carbon paste electrode. Analytica Chimica Acta, 370, 231–238. DOI: 10.1016/s0003-2670(98)00262-1.

    Article  Google Scholar 

  • Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). The substantia nigra of the human brain II. Patterns of loss of dopamine-containg neurons in Parkinson’s disease. Brain, 122, 1437–1448. DOI: 10.1093/brain/122.8.1437.

    Google Scholar 

  • Dayton, M. A., Ewing, A. G., & Wightman, R. M. (1980). Response of microvoltammetric electrodes to homogeneous catalysis and slow heterogeneous charge-transfer reactions. Analytical Chemistry, 52, 2392–2396. DOI: 10.1021/ac50064 a035.

    Article  CAS  Google Scholar 

  • Dong, J. P., Zhou, X. J., Zhao, H. B., Xu, J. Q., & Sum, Y. B. (2011). Reagentless amperometric glucose biosensor based on the immobilization of glucose oxidase on a ferrocene@NaY zeolite composite. Microchimica Acta, 174, 281–288. DOI: 10.1007/s00604-011-0624-1.

    Article  CAS  Google Scholar 

  • Dursun, Z., & Nişli, G. (2004). Voltammetric behaviour of copper( I)oxide modified carbon paste electrode in the presence of cysteine and ascorbic acid. Talanta, 63, 873–878. DOI: 10.1016/j.talanta.2003.12.049.

    Article  CAS  Google Scholar 

  • Gopalan, A. I., Lee, K. P., Manesh, K. M., Santhosh, P., Kim, J. H., & Kang, J. S. (2007). Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta, 71, 1774–1781. DOI: 10.1016/j.talanta.2006.08.026.

    Article  CAS  Google Scholar 

  • Guirado, A., Zapata, A., & de Arellano, M. C. R. (1997). The reaction of phthalidylidene dichloride with primary amines. Synthesis and X-ray molecular structure of Nsubstituted phthalisoimides. Tetrahedron, 53, 5305–5324. DOI: 10.1016/s0040-4020(97)00194-4.

    CAS  Google Scholar 

  • Kalita, B., & Talukdar, A. K. (2009). An efficient synthesis of nanocrystalline MFI zeolite using different silica sources: A green approach. Materials Research Bulletin, 44, 254–258. DOI: 10.1016/j.materresbull.2008.06.014.

    Article  CAS  Google Scholar 

  • Li, Y. X., Huang, X., Chen, Y. L., Wang, L., & Lin, X. Q. (2009). Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchimica Acta, 164, 107–112. DOI: 10.1007/s00604-008-0040-3.

    Article  CAS  Google Scholar 

  • Lin, X. H., Zhang, Y. F., Chen, W., & Wu, P. (2007). Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly(p-nitrobenzenazo resorcinol) modified glassy carbon electrode. Sensors and Actuators B: Chemical, 122, 309–314. DOI: 10.1016/j.snb.2006.06.004.

    Article  CAS  Google Scholar 

  • Liu, A. H., Honma, I., & Zhou, H. S. (2007). Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosenors and Bioelectronics, 23, 74–80. DOI: 10.1016/j.bios.2007.03.019.

    Article  Google Scholar 

  • Marko-Varga, G., Burested, E., Svensson, C. J., Emnéus, J., Gorton, L., Ruzgas, T., Lutz, M., & Unger, K. K. (1996). Effect of HY-zeolite on the performance of tyrocinase-modified carbon paste electrodes. Electroanalysis, 8, 1121–1126. DOI: 10.1002/elan.1140081209.

    Article  CAS  Google Scholar 

  • Martin, C. (1998). The Parkinson’s puzzle: New developments in our understanding of Parkinson’s disease have generated a number of promising new treatments for this disabling condition. Chemistry in Britain, 34(9), 40–42.

    CAS  Google Scholar 

  • Mazloum-Ardakani, M., Akrami, Z., Kazemian, H., & Zare, H. R. (2009). Preconcentration and electroanalysis of copper at zeolite modified carbon paste electrode. International Journal of Electrochemical Science, 4, 308–319.

    CAS  Google Scholar 

  • Molina, A., Villavicencio, C., & Fernández, L. (2009). Evaluation of a glassy carbon electrode modified with zeolite “A” in adsorption of 2-chlorophenol. Avances en Química, 4, 63–72. (in Spanish)

    CAS  Google Scholar 

  • Neves, I., Freire, C., Zakhárov, A. N., de Castro, B., & Figueiredo, J. L. (1996). Zeolite-encapsulated copper (II) complexes with N3O2 Schiff bases: synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 115, 249–256. DOI: 10.1016/0927-7757(96)03596-0.

    Article  CAS  Google Scholar 

  • Rajbongshi, J., Das, D. K., & Mazumdar, S. (2010). Direct electrochemistry of dinuclear CuA fragment from cytochrome c oxidase of Thermus thermophilus at surfactant modified glassy carbon electrode. Electrochimica Acta, 55, 4174–4179. DOI: 10.1016/j.electacta.2010.02.045.

    Article  CAS  Google Scholar 

  • Raoof, J. B., Ojani, R., & Rashid-Nadimi, S. (2005). Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochimica Acta, 50, 4694–4698. DOI: 10.1016/j.electacta.2005.03.002.

    Article  CAS  Google Scholar 

  • Rohani, T., & Taher, M. A. (2009). A new method for electrocatalytic oxidation of ascorbic acid at the Cu(II) zeolitemodified electrode. Talanta, 78, 743–747. DOI: 10.1016/j. talanta.2008.12.041.

    Article  CAS  Google Scholar 

  • Rohr, O., Sawaya, B. E., Lecestre, D., Aunis, D., & Schaeffer, E. (1999). Dopamine stimulates expression of the human immunodeficiency virus type 1 via NF-κB in cells of the immune system. Nucleic Acids Research, 27, 3291–3299. DOI: 10.1093/nar/27.16.3291.

    Article  CAS  Google Scholar 

  • Rolison, D. R. (1990). Zeolite-modified electrodes and electrodemodified zeolites. Chemical Reviews, 90, 867–878. DOI: 10.1021/cr00103a011.

    Article  CAS  Google Scholar 

  • Rover Júnior, L., Fernandes, J. C. B., de Oliviera-Neto, G., & Kubota, L. T. (2000). Development of a new FIA-potentiometric sensor for dopamine based on EVA-copper(II) ions. Journal of Electroanalytical Chemistry, 481, 34–41. DOI: 10.1016/s0022-0728(99)00474-x.

    Article  Google Scholar 

  • Senthikumar, S., & Saraswathi, R. (2009). Electrochemical sensing of cadmium and lead ions at zeolite — modified electrodes: Optimization and field measurements. Sensors and Actuators B: Chemical, 141, 65–75. DOI: 10.1016/j.snb.2009.05.029.

    Article  Google Scholar 

  • Shahrokhian, S., & Karimi, M. (2004). Voltammetric studies of a cobalt(II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid. Electrochimica Acta, 50, 77–84. DOI: 10.1016/j.electacta.2004.07.015.

    Article  CAS  Google Scholar 

  • Sotomayor, M. D. P. T., Tanaka, A. A., & Kubota, L. T. (2002). Development of an amperometric sensor for phenol compounds using a Nafion membrane doped with copper dipyridyl complex as a biomimetic catalyst. Journal of Electroanalytical Chemistry, 536, 71–81. DOI: 10.1016/s0022-0728(02)01205-6.

    Article  Google Scholar 

  • Suzuki, A., Ivandini, T. A., Yoshimi, K., Fujishima, A., Oyama, G., Nakazato, T., Hattori, N., Kitazawa, S., & Einaga, Y. (2007). Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Analytical Chemistry, 79, 8608–8615. DOI: 10.1021/ac071519h.

    Article  CAS  Google Scholar 

  • Volkov, A., Tourillon, G., Lacaze, P. C., & Dubois, J. E. (1980). Electrochemical polymerization of aromatic amines: IR, XPS and PMT study of thin film formation on a Pt electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 115, 279–291. DOI: 10.1016/s0022-0728(80)80332-9.

    Article  CAS  Google Scholar 

  • Walcarius, A. (1999). Zeolite modified electrodes in electroanalytical chemistry. Analytica Chimica Acta, 384, 1–16. DOI: 10.1016/s0003-2670(98)00849-6.

    Article  CAS  Google Scholar 

  • Wang, J., & Walcarius, A. (1996a). Zeolite containing oxidasebased carbon paste biosensor. Journal of Electroanalytical Chemistry, 404, 237–242. DOI: 10.1016/0022-0728(95)04357-8.

    Article  Google Scholar 

  • Wang, J., & Walcarius, A. (1996b). Zeolite-modified carbon paste elctrode for selective monitoring of dopamine. Journal of Electroanalytical Chemistry, 407, 183–187. DOI: 10.1016/0022-0728(95)04488-4.

    Article  Google Scholar 

  • Wang, M. G., Xu, X. G., & Gao, J. (2007). Voltammetric studies of a novel bicopper complex modified glassy carbon electrode for the simultaneous determination of dopamine and ascorbic acid. Journal of Applied Electrochemistry, 37, 705–710. DOI: 10.1007/s10800-007-9303-7.

    Article  CAS  Google Scholar 

  • Wang, G. F., Sun, J. G., Zhang, W., Jiao, S. F., & Fang, B. (2009). Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchimica Acta, 164, 357–362. DOI: 10.1007/s00604-008-0066-6.

    Article  CAS  Google Scholar 

  • Wightman, R. M., May, L. J., & Michael, A. C. (1988). Detection of dopamine dynamics in brain. Analytical Chemistry, 60, 769A–779A. DOI: 10.1021/ac00164a718.

    CAS  Google Scholar 

  • Wu, W., Zhu, H. R., Fan, L. Z., Liu, D. F., Renneberg, R., & Yang, S. H. (2007). Sensitive dopamine recognition by boronic acid functionalized multiwalled carbon nanotubes. Chemical Communications, 23, 2345–2347. DOI: 10.1039/b701254c.

    Article  Google Scholar 

  • Xiao, Y. H., Guo, C. X., Li, C. M., Li, Y. B., Zhang, J., Xue, R. H., & Zhang, S. (2007). Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film. Analytical Biochemistry, 371, 229–237. DOI: 10.1016/j.ab.2007.07.025.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D.K., Sarma, B. & Haloi, S. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid. Chem. Pap. 68, 153–163 (2014). https://doi.org/10.2478/s11696-013-0431-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0431-8

Keywords

Navigation