Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 203–209 | Cite as

Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes

  • Rosa M. Rodriguez-Jasso
  • Solange I. MussattoEmail author
  • Lorenzo Pastrana
  • Cristóbal N. Aguilar
  • José A. Teixeira
Original Paper

Abstract

Sulphated polysaccharides (SP) were extracted from Fucus vesiculosus seaweed by using two different hydrothermal processes: microwave-assisted extraction (MAE) and autohydrolysis (AH). The extraction yields, chemical composition, and antioxidant activity of the polysaccharides extracted were determined and compared. Although both processes afforded SP with similar yields (18.2 mass % and 16.5 mass %, for MAE and AH, respectively) and l-fucose as the main monosaccharide, the heterogeneous structure of the polysaccharide recovered was significantly affected by the AH process. The SP obtained by MAE contained 53.8 mole % of fucose, 35.3 mole % of xylose, and 10.8 mole % of galactose; while the SP obtained by AH was composed of 76.8 mole % of fucose and 23.2 mole % of galactose. Both samples presented comparable values of antioxidant activity by the di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (2,2-diphenyl-1-picrylhydrazyl, DPPH), 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and lipid oxidation inhibition methods, but the polysaccharide obtained by AH exhibited a higher antioxidant potential by the differential pulse voltammetry technique. This study demonstrates that the chemical composition and antioxidant activity of SP obtained from F. vesiculosus vary according to the process used for their extraction. However, the SP obtained by MAE or AH both have the potential for use as natural antioxidants in industrial applications.

Keywords

antioxidant activity autohydrolysis fucan Fucus vesiculosus microwave-assisted extraction sulphated polysaccharides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barahona, T., Chandía, N. P., Encinas, M. V., Matsuhiro, B., & Zúñiga, E. A. (2011). Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocolloids, 25, 529–535. DOI: 10.1016/j.foodhyd.2010.08.004.CrossRefGoogle Scholar
  2. Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M., & Ferreira, I. C. F. R. (2008). Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 111, 61–66. DOI:10.1016/j.foodchem.2008.03.033.Google Scholar
  3. Bhakuni, D. S., & Rawat, D. S. (2005). Bioactive marine natural products. New York, NY, USA: Springer.Google Scholar
  4. Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64, 21–28. DOI: 10.1016/j.biopha.2009.03.005.CrossRefGoogle Scholar
  5. Dodgson, K. S. (1961). Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochemical Journal, 78, 312–319.Google Scholar
  6. Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werksttoff, 57, 191–202. DOI: 10.1007/s001070050039.CrossRefGoogle Scholar
  7. Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70, 257–265. DOI: 10.1111/j.1753-4887.2012.00476.x.CrossRefGoogle Scholar
  8. Haroun-Bouhedja, F., Ellouali, M., Sinquin, C., & Boisson-Vidal, C. (2000). Relationship between sulfate groups and biological activities of fucans. Thrombosis Research, 100, 453–459. DOI: 10.1016/s0049-3848(00)00338-8.CrossRefGoogle Scholar
  9. Hu, F. L., Lu, R. L., Huang, B., & Ming, L. (2004). Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants. Fitoterapia, 75, 14–23. DOI: 10.1016/j.fitote.2003.07.003.CrossRefGoogle Scholar
  10. Jiao, G. L., Yu, G. L., Wang, W., Zhao, X. L., Zhang, J. Z., & Ewart, S. H. (2012). Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities. Journal of Ocean University of China, 11, 205–212. DOI: 10.1007/s11802-012-1906-x.CrossRefGoogle Scholar
  11. Kim, D. O., & Lee, C. Y. (2002). Extraction and isolation of polyphenolics. Current Protocols in Food Analytical Chemistry, 6, I1.2.1–I1.2.12. DOI: 10.1002/0471142913.fai0102s06.Google Scholar
  12. Korotkova, E. I., Karbainov, Y. A., & Shevchuk, A. V. (2002). Study of antioxidant properties by voltammetry. Journal of Electroanalytical Chemistry, 518, 56–60. DOI: 10.1016/s0022-0728(01)00664-7.CrossRefGoogle Scholar
  13. Li, B., Lu, F., Wei, X. J., & Zhao, R. X. (2008). Fucoidan: Structure and bioactivity. Molecules, 13, 1671–1695. DOI:10.3390/molecules13081671.CrossRefGoogle Scholar
  14. Lim, S. N., Cheung, P. C. K., Ooi, V. E. C., & Ang, P. O. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50, 3862–3866. DOI: 10.1021/jf020096b.CrossRefGoogle Scholar
  15. Mao, W. J., Zang, X. X., Li, Y., & Zhang, H. J. (2006). Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. Journal of Applied Phycology, 18, 9–14. DOI: 10.1007/s10811-005-9008-4.CrossRefGoogle Scholar
  16. Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2012). Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 88, 163–167. DOI: 10.1016/j.seppur.2011.12.020.CrossRefGoogle Scholar
  17. Qi, H. M., Zhao, T. T., Zhang, Q. B., Li, Z., Zhao, Z. Q., & Xing, R. (2005). Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology, 17, 527–534. DOI: 10.1007/s10811-005-9003-9.CrossRefGoogle Scholar
  18. Rioux, L. E., Turgeon, S. L., & Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers, 69, 530–537. DOI: 10.1016/j. carbpol.2007.01.009.CrossRefGoogle Scholar
  19. Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86, 1137–1144. DOI: 10.1016/j.carbpol.2011.06.006.CrossRefGoogle Scholar
  20. Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2013). Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. Journal of Applied Phycology, 25, 31–39. DOI: 10.1007/s10811-012-9834-0.CrossRefGoogle Scholar
  21. Rupérez, P., Ahrazem, O., & Leal, J. A. (2002). Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 50, 840–845. DOI: 10.1021/jf010908o.CrossRefGoogle Scholar
  22. Schaeffer, D. J., & Krylov, V. S. (2000). Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicology and Environmental Safety, 45, 208–227. DOI: 10.1006/eesa.1999.1862.CrossRefGoogle Scholar
  23. Sokolova, E. V., Barabanova, A. O., Bogdanovich, R. N., Khomenko, V. A., Solov’eva, T. F., & Yermak, I. M. (2011). In vitro antioxidant properties of red algal polysaccharides. Biomedicine & Preventive Nutrition, 1, 161–167. DOI: 10.1016/j.bionut.2011.06.011.CrossRefGoogle Scholar
  24. Wang, J., Zhang, Q. B., Zhang, Z. S., Song, H. F., & Li, P. C. (2010). Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 46, 6–12. DOI: 10.1016/j.ijbiomac.2009.10.015.CrossRefGoogle Scholar
  25. Wijesekara, I., Pangestuti, R., & Kim, S. K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84, 14–21. DOI: 10.1016/j.carbpol.2010.10.062.CrossRefGoogle Scholar
  26. Wijesinghe, W. A. J. P., & Jeon, Y. J. (2012). Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 88, 13–20. DOI: 10.1016/j.carbpol.2011.12.029.CrossRefGoogle Scholar
  27. Yuan, H. M., Zhang, W. W., Li, X. G., Lü, X. X., Li, N., Gao, X. L., & Song, J. M. (2005). Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydrate Research, 340, 685–692. DOI: 10.1016/j.carres.2004.12.026.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Rosa M. Rodriguez-Jasso
    • 1
  • Solange I. Mussatto
    • 1
    Email author
  • Lorenzo Pastrana
    • 2
  • Cristóbal N. Aguilar
    • 3
  • José A. Teixeira
    • 1
  1. 1.Institute for Biotechnology and Bioengineering (IBB), Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Department of Analytical and Food Chemistry, Food Science and Technology FacultyUniversity of VigoOurenseSpain
  3. 3.Food Research Department, School of ChemistryUniversidad Autónoma de Coahuila, Unidad SaltilloSaltilloCoahuila, Mexico

Personalised recommendations