Skip to main content
Log in

Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The molecular parameters of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and some compounds based on triphenylformazans (TPFs) — resulting from the enzymatic transformation of TTC, were subjected to comparative investigation on the basis of semi-empirical quantum-chemical simulations, revealing some changes in dipole moment and polarisability in the TPFs in comparison with TTC. Chemical shift due to substituents was discussed using electronic absorption bands in the UV-VIS range recorded for diluted solutions in various solvents as well as the absorption spectra recorded in the infrared range for KBr dispersions. The correlation of the spectral shift of the electronic absorption bands with a specific function on the solvent refractive index, as recommended by theoretical studies focused on solute-solvent interactions, revealed the major role played by dispersive and induction forces. For several solvents, a different behaviour could be assigned to specific interactions overlapping with universal solute-solvent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, T. (1965). Theory of solvent effects on molecular electronic spectra. Frequency shifts. Bulletin of the Chemical Society of Japan, 38, 1314–1318. DOI: 10.1246/bcsj.38.1314.

    Article  CAS  Google Scholar 

  • Awasthi, L. P., & Singh, S. P. (1982). Formazans and tetrazolium salts as potential antibacterial, antifungal, and antiviral agents. Zentralblatt für Mikrobiologie, 137, 503–507. DOI: 10.1016/s0232-4393(82)80008-5.

    CAS  Google Scholar 

  • Bačkor, M., & Fahselt, D. (2005). Tetrazolium reduction as an indicator of environmental stress in lichens and isolated bionts. Environmental and Experimental Botany, 53, 125–133. DOI: 10.1016/j.envexpbot.2004.03.007.

    Article  Google Scholar 

  • Bakhshiev, N. G. (1972). Spektroskopiya mezhmolekulyarnykh vzaimodeistvii. Leningrad, Russia: Izd. Nauka. (in Russian)

    Google Scholar 

  • Bharadwaj, S. D. (2002). Synthesis and biological activities of some new formazans, Part I. Asian Journal of Chemistry, 14, 767–770.

    CAS  Google Scholar 

  • Bhupathiraju, V. K., Hernandez, M., Landfear, D., & Alvarez-Cohen, L. (1999). Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. Journal of Microbiological Methods, 37, 231–243. DOI: 10.1016/s0167-7012(99)00069-x.

    Article  CAS  Google Scholar 

  • Burdock, T., Brooks, M., Ghaly, A., & Deepika, D. (2011). Effect of assay conditions on the measurement of dehydrogenase activity of Streptomyces venezuelae using triphenyl tetrazolium chloride. Advances in Bioscience and Biotechnology, 2, 214–225. DOI: 10.4236/abb.2011.24032.

    Article  CAS  Google Scholar 

  • Coates, J. P. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester, UK: Wiley.

    Google Scholar 

  • Erkoç, Ş., Tezcan, H., Çalişir, E. D., & Erkoç, F. (2006). Synthesis of bis-formazan molecule and quantum-chemical calculation. International Journal of Pure and Applied Chemistry, 1, 37–44.

    Google Scholar 

  • Frederiks, W. M., van Marle, J., van Oven, C., Comin-Anduix, B., & Cascante, M. (2006). Improved localization of glucose-6-phosphate dehydrogenase activity in cells with 5-cyano-2,3-ditolyl-tetrazolium chloride as fluorescent redox dye reveals its cell cycle-dependent regulation. Journal of Histochemistry & Cytochemistry, 54, 47–52. DOI: 10.1369/jhc.5a6663.2005.

    Article  CAS  Google Scholar 

  • Gil-Agustí, M., Esteve-Romero, J., & Abraham, M. H. (2006). Solute-solvent interactions in micellar liquid chromatography: Characterization of hybrid micellar systems of sodium dodecyl sulfate-pentanol. Journal of Chromatography A, 1117, 47–55. DOI: 10.1016/j.chroma.2006.03.046.

    Article  Google Scholar 

  • Gökçe, G., Durmuş, Z., Tezcan, H., Kiliç, E., & Yilmaz, H. (2005). Electrochemical investigation of 1,3,5-triphenylformazan and its nitro derivatives in dimethyl sulfoxide. Analytical Sciences, 21, 685–688. DOI: 10.2116/analsci.21.685.

    Article  Google Scholar 

  • Hypercube (2011). HyperChem version 8.0.10 Package [computer software], Gainesville, FL, USA: Hypercube.

    Google Scholar 

  • Jones, P. H., & Prasad, D. (1969). The use of tetrazolium salts as a measure of sludge activity. Journal (Water Pollution Control Federation), 41, R441–R449.

    CAS  Google Scholar 

  • Kaliszan, R. (1993). Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 656, 417–435. DOI: 10.1016/0021-9673(93)80812-m.

    Article  CAS  Google Scholar 

  • King, R. A., & Murrin, B. (2004). A computational study of the structure and synthesis of formazans. Journal of Physical Chemistry A, 108, 4961–4965. DOI: 10.1021/jp0400622.

    Article  CAS  Google Scholar 

  • Mahmoud, N. S., & Ghaly, A. E. (2004). Influence of temperature and pH on the nonenzymatic reduction of triphenyltetrazolium chloride. Biotechnology Progress, 20, 346–353. DOI: 10.1021/bp030029h.

    Article  CAS  Google Scholar 

  • Mariappan, G., Korim, R., Joshi, N. M., Alam, F., Hazarika, R., Kumar, D., & Uriah, T. (2010). Synthesis and biological evaluation of formazan derivatives. Journal of Advanced Pharmaceutical Technology and Research, 1, 396–400. DOI: 10.4103/0110-5558.76438.

    Article  CAS  Google Scholar 

  • Mataga, N., & Kubota, T. (1970). Molecular interactions and electronic spectra. New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • McRae, E. G. (1957). Theory of solvent effects of molecular electronic spectra. Frecquency shifts. Journal of Physical Chemistry, 61, 562–572. DOI: 10.1021/j150551a012.

    Article  CAS  Google Scholar 

  • Onsager, L. (1936). Electric moments of molecules in liquids. Journal of the American Chemical Society, 58, 1486–1493. DOI: 10.1021/ja01299a050.

    Article  CAS  Google Scholar 

  • Pechmann, H. V., & Runge, P. (1894). Oxydation der Formazylverbindungen. Berichte der Deutschen Chemischen Gesellschaft, 27, 323–324. DOI: 10.1002/cber.18940270165. (in German)

    Article  Google Scholar 

  • Pervova, I. G., Barachevskii, V. A., Melkozerov, S. A., Lipunova, G. N., Sigeikin, G. I., & Lipunov, I. N. (2010). A spectralkinetic study of the photochemical properties of 1-aryl-3-alkyl-5-(benzothiazol-2-yl)formazans. High Energy Chemistry, 44, 22–24. DOI: 10.1134/s0018143910010042.

    Article  Google Scholar 

  • Piaru, S. P., Mahmud, R., & Perumal, S. (2012). Determination of antimicrobial activity of essential oil of Myristica fragrans Houtt. using tetrazolium microplate assay and its cytotoxic activity against Vero cell line. International Journal of Pharmacology, 8, 572–576. DOI: 10.3923/ijp.2012.572.576.

    Article  Google Scholar 

  • Praveen-Kumar, & Tarafdar, J. C. (2003). 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biology and Fertility of Soils, 38, 186–189. DOI: 10.1007/s00374-003-0600-y.

    Article  CAS  Google Scholar 

  • Reichardt, C. (2003). Solvents and solvent effects in organic chemistry (3rd ed.). Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Ruf, M., & Brunner, I. (2003). Vitality of tree fine roots: reevaluation of the tetrazolium test. Tree Physiology, 23, 257–263. DOI: 10.1093/treephys/23.4.257.

    Article  Google Scholar 

  • Şenöz, H. (2012). The chemistry of formazans and tetrazolium salts. Hacettepe Journal of Biology and Chemistry, 40, 293–301.

    Google Scholar 

  • Sigeikin, G. I., Lipunova, G. N., & Pervova, I. G. (2006). Formazans and their metal complexes. Russian Chemical Reviews, 75, 885–900. DOI: 10.1070/rc2006v075n10abeh003612.

    Article  CAS  Google Scholar 

  • Snyder, L. R., Carr, P. W., & Rutan, S. C. (1993). Solvatochromically based solvent-selectivity triangle. Journal of Chromatography A, 656, 537–547. DOI: 10.1016/0021-9673(93)80818-s.

    Article  CAS  Google Scholar 

  • Suppan, P. (1990). Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. Journal of Photochemistry and Photobiology A: Chemistry, 50, 293–330. DOI: 10.1016/1010-6030(90)87021-3.

    Article  CAS  Google Scholar 

  • Tezcan, H., Can, Ş., & Tezcan, R. (2002). The synthesis and spectral properties determination of 3-substituted phenyl-1,5-diphenylformazans. Dyes and Pigments, 52, 121–127. DOI: 10.1016/s0143-7208(01)00074-2.

    Article  CAS  Google Scholar 

  • Tezcan, H., & Ozkan, N. (2003). Substituent effects on the spectral properties of some 3-substituted formazans. Dyes and Pigments, 56, 159–166. DOI: 10.1016/s0143-7208(02)00131-6.

    Article  CAS  Google Scholar 

  • Tezcan, H. (2008). Synthesis and spectral properties of some bis-substituted formazans. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 971–979. DOI: 10.1016/j.saa.2007.05.061.

    Article  Google Scholar 

  • Tezcan, H., & Uzluk, E. (2008). The synthesis and spectral properties of 1,3-substituted phenyl-5-phenylformazans and their Ni(II) complexes. Dyes and Pigments, 76, 733–740. DOI: 10.1016/j.dyepig.2007.01.016.

    Article  CAS  Google Scholar 

  • Tezcan, H., Uzluk, E., & Aksu, M. L. (2008). Electrochemical and structural properties of 1,3-substituted (-Cl, — Br) phenyl-5-phenylformazans. Journal of Electroanalytical Chemistry, 619–620, 105–116. DOI: 10.1016/j.jelechem.2008.03.013.

    Article  Google Scholar 

  • Tezcan, H., & Aksu, M. L. (2010). Electrochemical properties of 1-(o-,m-,p-nitrophenyl)-3-(m-nitrophenyl)-5-phenylformazans and their nickel complexes. Turkish Journal of Chemistry, 34, 465–479. DOI: 10.3906/kim-0903-4.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dorina Creanga or Claudia Nadejde.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creanga, D., Nadejde, C. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives. Chem. Pap. 68, 260–271 (2014). https://doi.org/10.2478/s11696-013-0429-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0429-2

Keywords

Navigation