Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 260–271 | Cite as

Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives

  • Dorina CreangaEmail author
  • Claudia NadejdeEmail author
Original Paper

Abstract

The molecular parameters of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and some compounds based on triphenylformazans (TPFs) — resulting from the enzymatic transformation of TTC, were subjected to comparative investigation on the basis of semi-empirical quantum-chemical simulations, revealing some changes in dipole moment and polarisability in the TPFs in comparison with TTC. Chemical shift due to substituents was discussed using electronic absorption bands in the UV-VIS range recorded for diluted solutions in various solvents as well as the absorption spectra recorded in the infrared range for KBr dispersions. The correlation of the spectral shift of the electronic absorption bands with a specific function on the solvent refractive index, as recommended by theoretical studies focused on solute-solvent interactions, revealed the major role played by dispersive and induction forces. For several solvents, a different behaviour could be assigned to specific interactions overlapping with universal solute-solvent interactions.

Keywords

quantum-chemical approach substituent influence solvatochromic effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2013_429_MOESM1_ESM.doc (139 kb)
Supplementary material, approximately 228 KB.

References

  1. Abe, T. (1965). Theory of solvent effects on molecular electronic spectra. Frequency shifts. Bulletin of the Chemical Society of Japan, 38, 1314–1318. DOI: 10.1246/bcsj.38.1314.CrossRefGoogle Scholar
  2. Awasthi, L. P., & Singh, S. P. (1982). Formazans and tetrazolium salts as potential antibacterial, antifungal, and antiviral agents. Zentralblatt für Mikrobiologie, 137, 503–507. DOI: 10.1016/s0232-4393(82)80008-5.Google Scholar
  3. Bačkor, M., & Fahselt, D. (2005). Tetrazolium reduction as an indicator of environmental stress in lichens and isolated bionts. Environmental and Experimental Botany, 53, 125–133. DOI: 10.1016/j.envexpbot.2004.03.007.CrossRefGoogle Scholar
  4. Bakhshiev, N. G. (1972). Spektroskopiya mezhmolekulyarnykh vzaimodeistvii. Leningrad, Russia: Izd. Nauka. (in Russian)Google Scholar
  5. Bharadwaj, S. D. (2002). Synthesis and biological activities of some new formazans, Part I. Asian Journal of Chemistry, 14, 767–770.Google Scholar
  6. Bhupathiraju, V. K., Hernandez, M., Landfear, D., & Alvarez-Cohen, L. (1999). Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. Journal of Microbiological Methods, 37, 231–243. DOI: 10.1016/s0167-7012(99)00069-x.CrossRefGoogle Scholar
  7. Burdock, T., Brooks, M., Ghaly, A., & Deepika, D. (2011). Effect of assay conditions on the measurement of dehydrogenase activity of Streptomyces venezuelae using triphenyl tetrazolium chloride. Advances in Bioscience and Biotechnology, 2, 214–225. DOI: 10.4236/abb.2011.24032.CrossRefGoogle Scholar
  8. Coates, J. P. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester, UK: Wiley.Google Scholar
  9. Erkoç, Ş., Tezcan, H., Çalişir, E. D., & Erkoç, F. (2006). Synthesis of bis-formazan molecule and quantum-chemical calculation. International Journal of Pure and Applied Chemistry, 1, 37–44.Google Scholar
  10. Frederiks, W. M., van Marle, J., van Oven, C., Comin-Anduix, B., & Cascante, M. (2006). Improved localization of glucose-6-phosphate dehydrogenase activity in cells with 5-cyano-2,3-ditolyl-tetrazolium chloride as fluorescent redox dye reveals its cell cycle-dependent regulation. Journal of Histochemistry & Cytochemistry, 54, 47–52. DOI: 10.1369/jhc.5a6663.2005.CrossRefGoogle Scholar
  11. Gil-Agustí, M., Esteve-Romero, J., & Abraham, M. H. (2006). Solute-solvent interactions in micellar liquid chromatography: Characterization of hybrid micellar systems of sodium dodecyl sulfate-pentanol. Journal of Chromatography A, 1117, 47–55. DOI: 10.1016/j.chroma.2006.03.046.CrossRefGoogle Scholar
  12. Gökçe, G., Durmuş, Z., Tezcan, H., Kiliç, E., & Yilmaz, H. (2005). Electrochemical investigation of 1,3,5-triphenylformazan and its nitro derivatives in dimethyl sulfoxide. Analytical Sciences, 21, 685–688. DOI: 10.2116/analsci.21.685.CrossRefGoogle Scholar
  13. Hypercube (2011). HyperChem version 8.0.10 Package [computer software], Gainesville, FL, USA: Hypercube.Google Scholar
  14. Jones, P. H., & Prasad, D. (1969). The use of tetrazolium salts as a measure of sludge activity. Journal (Water Pollution Control Federation), 41, R441–R449.Google Scholar
  15. Kaliszan, R. (1993). Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 656, 417–435. DOI: 10.1016/0021-9673(93)80812-m.CrossRefGoogle Scholar
  16. King, R. A., & Murrin, B. (2004). A computational study of the structure and synthesis of formazans. Journal of Physical Chemistry A, 108, 4961–4965. DOI: 10.1021/jp0400622.CrossRefGoogle Scholar
  17. Mahmoud, N. S., & Ghaly, A. E. (2004). Influence of temperature and pH on the nonenzymatic reduction of triphenyltetrazolium chloride. Biotechnology Progress, 20, 346–353. DOI: 10.1021/bp030029h.CrossRefGoogle Scholar
  18. Mariappan, G., Korim, R., Joshi, N. M., Alam, F., Hazarika, R., Kumar, D., & Uriah, T. (2010). Synthesis and biological evaluation of formazan derivatives. Journal of Advanced Pharmaceutical Technology and Research, 1, 396–400. DOI: 10.4103/0110-5558.76438.CrossRefGoogle Scholar
  19. Mataga, N., & Kubota, T. (1970). Molecular interactions and electronic spectra. New York, NY, USA: Marcel Dekker.Google Scholar
  20. McRae, E. G. (1957). Theory of solvent effects of molecular electronic spectra. Frecquency shifts. Journal of Physical Chemistry, 61, 562–572. DOI: 10.1021/j150551a012.CrossRefGoogle Scholar
  21. Onsager, L. (1936). Electric moments of molecules in liquids. Journal of the American Chemical Society, 58, 1486–1493. DOI: 10.1021/ja01299a050.CrossRefGoogle Scholar
  22. Pechmann, H. V., & Runge, P. (1894). Oxydation der Formazylverbindungen. Berichte der Deutschen Chemischen Gesellschaft, 27, 323–324. DOI: 10.1002/cber.18940270165. (in German)CrossRefGoogle Scholar
  23. Pervova, I. G., Barachevskii, V. A., Melkozerov, S. A., Lipunova, G. N., Sigeikin, G. I., & Lipunov, I. N. (2010). A spectralkinetic study of the photochemical properties of 1-aryl-3-alkyl-5-(benzothiazol-2-yl)formazans. High Energy Chemistry, 44, 22–24. DOI: 10.1134/s0018143910010042.CrossRefGoogle Scholar
  24. Piaru, S. P., Mahmud, R., & Perumal, S. (2012). Determination of antimicrobial activity of essential oil of Myristica fragrans Houtt. using tetrazolium microplate assay and its cytotoxic activity against Vero cell line. International Journal of Pharmacology, 8, 572–576. DOI: 10.3923/ijp.2012.572.576.CrossRefGoogle Scholar
  25. Praveen-Kumar, & Tarafdar, J. C. (2003). 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biology and Fertility of Soils, 38, 186–189. DOI: 10.1007/s00374-003-0600-y.CrossRefGoogle Scholar
  26. Reichardt, C. (2003). Solvents and solvent effects in organic chemistry (3rd ed.). Weinheim, Germany: Wiley-VCH.Google Scholar
  27. Ruf, M., & Brunner, I. (2003). Vitality of tree fine roots: reevaluation of the tetrazolium test. Tree Physiology, 23, 257–263. DOI: 10.1093/treephys/23.4.257.CrossRefGoogle Scholar
  28. Şenöz, H. (2012). The chemistry of formazans and tetrazolium salts. Hacettepe Journal of Biology and Chemistry, 40, 293–301.Google Scholar
  29. Sigeikin, G. I., Lipunova, G. N., & Pervova, I. G. (2006). Formazans and their metal complexes. Russian Chemical Reviews, 75, 885–900. DOI: 10.1070/rc2006v075n10abeh003612.CrossRefGoogle Scholar
  30. Snyder, L. R., Carr, P. W., & Rutan, S. C. (1993). Solvatochromically based solvent-selectivity triangle. Journal of Chromatography A, 656, 537–547. DOI: 10.1016/0021-9673(93)80818-s.CrossRefGoogle Scholar
  31. Suppan, P. (1990). Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. Journal of Photochemistry and Photobiology A: Chemistry, 50, 293–330. DOI: 10.1016/1010-6030(90)87021-3.CrossRefGoogle Scholar
  32. Tezcan, H., Can, Ş., & Tezcan, R. (2002). The synthesis and spectral properties determination of 3-substituted phenyl-1,5-diphenylformazans. Dyes and Pigments, 52, 121–127. DOI: 10.1016/s0143-7208(01)00074-2.CrossRefGoogle Scholar
  33. Tezcan, H., & Ozkan, N. (2003). Substituent effects on the spectral properties of some 3-substituted formazans. Dyes and Pigments, 56, 159–166. DOI: 10.1016/s0143-7208(02)00131-6.CrossRefGoogle Scholar
  34. Tezcan, H. (2008). Synthesis and spectral properties of some bis-substituted formazans. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 971–979. DOI: 10.1016/j.saa.2007.05.061.CrossRefGoogle Scholar
  35. Tezcan, H., & Uzluk, E. (2008). The synthesis and spectral properties of 1,3-substituted phenyl-5-phenylformazans and their Ni(II) complexes. Dyes and Pigments, 76, 733–740. DOI: 10.1016/j.dyepig.2007.01.016.CrossRefGoogle Scholar
  36. Tezcan, H., Uzluk, E., & Aksu, M. L. (2008). Electrochemical and structural properties of 1,3-substituted (-Cl, — Br) phenyl-5-phenylformazans. Journal of Electroanalytical Chemistry, 619–620, 105–116. DOI: 10.1016/j.jelechem.2008.03.013.CrossRefGoogle Scholar
  37. Tezcan, H., & Aksu, M. L. (2010). Electrochemical properties of 1-(o-,m-,p-nitrophenyl)-3-(m-nitrophenyl)-5-phenylformazans and their nickel complexes. Turkish Journal of Chemistry, 34, 465–479. DOI: 10.3906/kim-0903-4.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsAlexandru Ioan Cuza UniversityIasiRomania

Personalised recommendations