Skip to main content
Log in

Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the present work, kinetics of tartrazine decay by UV irradiation and H2O2 photolysis, and the removal of total organic carbon (TOC) under specific experimental conditions was explored. Irradiation experiments were carried out using a photoreactor of original design with a low-pressure Hg vapour lamp. The photodegradation rate of tartrazine was optimised with respect to the H2O2 concentration and temperature for the constant dye concentration of 1.035 × 10−5 M. Tartrazine degradation and the removal of TOC followed the pseudo-first-order kinetics. The much higher k obs value for tartrazine degradation (7.91 × 10−4 s−1) as compared with the TOC removal (2.3 × 10−4 s−1) confirmed the presence of reaction intermediates in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez Cuesta, E., Alcover Sánchez, R., Sainz Martín, T., Anaya Turrientes, M., & García Rodríguez, D. (1981). Pharmaceutical preparations which contain tartrazine. Allergologia et Immunopathologia (Madrid), 9, 45–54. (in Spanish)

    CAS  Google Scholar 

  • Aleboyeh, A., Aleboyeh, H., & Moussa, Y. (2003). “Critical” effect of hydrogen peroxide in photochemical oxidative decolorization of dyes: Acid Orange 8, Acid Blue 74 and Methyl Orange. Dyes and Pigments, 57, 67–75. DOI: 10.1016/s0143-7208(03)00010-x.

    Article  CAS  Google Scholar 

  • Behnajady, M. A., Modirshahla, N., & Shokri, M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere, 55, 129–134. DOI: 10.1016/j.chemosphere.2003.10.054.

    Article  CAS  Google Scholar 

  • Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O 2 radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 14, 1041–1100. DOI: 10.1063/1.555739.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886. DOI: 10.1063/1.555805.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., & Aber, S. (2002). Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. Journal of Hazardous Materials, B94, 49–61. DOI: 10.1016/s0304-3894(02)00054-7.

    Article  Google Scholar 

  • Daneshvar, N., Ashassi-Sorkhabi, H., & Tizpar, A. (2003). Decolorization of orange II by electrocoagulation method. Separation and Purification Technology, 31, 153–162. DOI: 10.1016/s1383-5866(02)00178-8.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27(AR27). Chemosphere, 56, 895–900. DOI: 10.1016/j.chemosphere.2004.06.001.

    Article  CAS  Google Scholar 

  • Da Silva, C. R., Maniero, M. G., Rath, S., & Guimãraes, J. R. (2011). Antibacterial activity inhibition after the degradation of flumequine by UV/H2O2. Journal of Advanced Oxidation and Technology, 14, 106–114.

    Google Scholar 

  • El-Dein, A. M., Libra, J. A., & Wiesmann, U. (2003). Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation. Chemosphere, 52, 1069–1077. DOI: 10.1016/s0045-6535(03)00226-1.

    Article  CAS  Google Scholar 

  • Elmorsi, T. M., Riyad, Y. M., Mohamed, Z. H., & Abd El Bary, H. M. H. (2010). Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. Journal of Hazardous Materials, 174, 352–358. DOI: 10.1016/j.jhazmat.2009.09.057.

    Article  CAS  Google Scholar 

  • El Qada, E., Allen, S., & Walker, G. M. (2008). Adsorption of basic dyes from aqueous solution onto activated carbons. Chemical Engineering Journal, 135, 174–184. DOI: 10.1016/j.cej.2007.02.023.

    Article  Google Scholar 

  • Fragoso, C. T., Battisti, R., Miranda, C., & de Jesus, P. C. (2009). Kinetic of the degradation of C.I. Food Yellow 3 and C.I. Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 301, 93–97. DOI: 10.1016/j.molcata.2008.11.014.

    Article  CAS  Google Scholar 

  • Gao, J., Wang, X., Hu, Z., Deng, H., Hou, J., Lu, X., & Kang, J. (2003). Plasma degradation of dyes in water with contact glow discharge electerolysis. Water Research, 37, 267–272. DOI: 10.1016/s0043-1354(02)00273-7.

    Article  CAS  Google Scholar 

  • Georgiou, D., Melidis, P., Aivasidis, A., & Gimouhopoulos, K. (2002). Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes and Pigments, 52, 69–78. DOI: 10.1016/s0143-7208(01)00078-x.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering C, 31, 1062–1067. DOI: 10.1016/j.msec.2011.03.006.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Pathania, D., Agarwal, S., & Singh, P. (2012a). Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. Journal of Hazardous Materials, 243, 179–186. DOI: 10.1016/j.jhazmat.2012.10.018.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012b). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering C, 32, 12–17. DOI: 10.1016/j.msec.2011.08.018.

    Article  CAS  Google Scholar 

  • Hatchard, C. G., & Parker, C. A. (1956). A new sensitive actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 235, 518–536. DOI: 10.1098/rspa.1956.0102.

    Article  CAS  Google Scholar 

  • Ince, N. H., Stefan, M. I., & Bolton, J. R. (1997). UV/H2O2 degradation and toxicity reduction of textile azo dye: remazol Black-B, a case study. Journal of Advanced Oxididation Technologies, 2, 442–448.

    CAS  Google Scholar 

  • Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2006). Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes and Pigments, 70, 1–7. DOI: 10.1016/j.dyepig.2004.12.021.

    Article  CAS  Google Scholar 

  • Mittal, A., Kurup, L., & Mittal, J. (2007). Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers, Journal of Hazardous Materials, 146, 243–248. DOI: 10.1016/j.jhazmat.2006.12.012.

    Article  CAS  Google Scholar 

  • Modirshahla, N., & Behnajady, M. A. (2006). Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modelling. Dyes and Pigments, 70, 54–59. DOI: 10.1016/j.dyepig.2005.04.012.

    Article  CAS  Google Scholar 

  • Muruganandham, M., & Swaminathan, M. (2004). Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes and Pigments, 62, 269–275. DOI: 10.1016/j.dyepig.2003.12.006.

    Article  CAS  Google Scholar 

  • Pagga, U. T., & Taeger, K. (1994). Development of a method for adsorption of dyestuffs on activated sludge. Water Research, 28, 1051–1057. DOI: 10.1016/0043-1354(94)90190-2.

    Article  CAS  Google Scholar 

  • Patel, R., & Suresh, S. (2006). Decolourization of azo dyes using magnesium-palladium system. Journal of Hazardous Materials, B137, 1729–1741. DOI: 10.1016/j.jhazmat.2006.05.019.

    Article  Google Scholar 

  • Rott, U., & Minke, R. (1999). Overview of wastewater treatment and recycling in the textile processing industry. Water Science and Technology, 40, 137–144. DOI: 10.1016/s0273-1223(99)00381-9.

    Article  CAS  Google Scholar 

  • Salem, M. A., & Gemeay, A. H. (2000). Kinetics of the oxidation of tartrazine with peroxydisulfate in the presence and absence of catalysts. Monatshefte für Chemie, 131, 117–129. DOI: 10.1007/s007060050013.

    Article  CAS  Google Scholar 

  • Shu, H. Y., Chang, M. C., & Fan, H. J. (2004). Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters. Journal of Hazardous Materials, B113, 201–208. DOI: 10.1016/j.jhazmat.2004.06.007.

    Article  Google Scholar 

  • Shu, H. Y., & Chang, M. C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes and Pigments, 65, 25–31. DOI: 10.1016/j.dyepig.2004.06.014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorica Meltzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oancea, P., Meltzer, V. Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution. Chem. Pap. 68, 105–111 (2014). https://doi.org/10.2478/s11696-013-0426-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0426-5

Keywords

Navigation