Advertisement

Chemical Papers

, Volume 68, Issue 2, pp 180–189 | Cite as

Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane

  • Tatchanok Prapasawat
  • Anchaleeporn Waritswat LothongkumEmail author
  • Ura PancharoenEmail author
Original Paper

Abstract

This paper reports on the enantioseparation of racemic phenylalanine or D-phenylalanine and Lphenylalanine via a hollow fibre-supported liquid membrane (HFSLM) and the results are compared with the mathematical model. The enantioseparation results, of 80 % and 73 %, showed the highest extraction and stripping of l-phenylalanine from the feed phase and the enantiomeric excess (% ee) of 60 % from 6 mmol L−1 of initial rac-phenylalanine in the feed solution. The optimum parameters were feed solution at pH 5, 6 mmol LL−1 of O,O′-dibenzoyl-(2S,3S)-tartaric acid ((+)-DBTA) as the extractant in octanol as the liquid membrane, and deionised water as the stripping solution. Equal flow-rates of feed and stripping solutions of 100 mL minL−1 were adjusted in a batch operation mode for 50 min at ambient temperature. From the calculation, the equilibrium constants of extraction (K ex) and mass transfer coefficients in the feed phase (k f) and in the liquid membrane phase (k m) were found to be 1.81 L mmol−2, 3.50 × 10−2 cm s−1, and 1.40 × 10−2 cm s−1, respectively. Finally, the change in concentrations of d,l-phenylalanine over time in the feed and stripping solutions by mathematical model were estimated and compared with the experimental results. The values thus calculated were in agreement with the experimental data with the average deviation of approximately 3 %.

Keywords

enantioseparation hollow fibre-supported liquid membrane O,O′-dibenzoyl-(2S,3S)-tartaric acid rac-phenylalanine d,l-phenylalanine model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agranat, I., Caner, H.,& Caldwell, J. (2002). Putting chirality to work: the strategy of chiral switches. Nature Reviews Drug Discovery, 1, 753–768. DOI: 10.1038/nrd915.CrossRefGoogle Scholar
  2. Choi, J. W., Cho, K. S., Ko, S. K., Youn, I. J.,& Lee, W. H. (1998). Separation and concentration of L-phenylalanine using a supported liquid membrane. Biotechnology and Bioprocess Engineering, 3, 24–31. DOI: 10.1007/bf02932479.CrossRefGoogle Scholar
  3. Christianson, D. W., Mangani, S., Shoham, G.,& Lipscomb, W. N. (1989). Binding of D-phenylalanine and D-tyrosine to carboxypeptidase A. The Journal of Biological Chemistry, 264, 12849–12853.Google Scholar
  4. Coelhoso, I. M., Cardoso, M. M., Viegas, R. M. C.,& Crespo, J. P. S. G. (2000). Transport mechanisms and modelling in liquid membrane contactors. Separation and Purification Technology, 19, 183–197. DOI: 10.1016/s1383-5866(00)00051-4.CrossRefGoogle Scholar
  5. Danesi, P. R. (1984). A simplified model for the coupled transport of metal ions through hollow-fiber supported liquid membranes. Journal of Membrane Science, 20, 231–248. DOI: 10.1016/s0376-7388(00)82001-3.CrossRefGoogle Scholar
  6. Field, R.W. (1996) Mass transport and the design of membrane systems. In K. Scott, & R. Hughes (Eds.), Industrial membrane separation technology (pp. 81). Glasgow, UK: Blackie Academic & Professional.Google Scholar
  7. Giorno, L.,& Drioli, E. (1999). Enantiospecific membrane processes. Membrane Technology, 1999(106), 6–11. DOI: 10.1016/s0958-2118(00)80144-5.CrossRefGoogle Scholar
  8. Hadik, P., Kotsis, L., Eniszné-Bódogh, M., Szabó, L. P.,& Nagy, E. (2005). Lactic acid enantioseparation by means of porous ceramic disc and hollow fiber organic membrane. Separation and Purification Technology, 41, 299–304. DOI: 10.1016/j.seppur.2004.03.020.CrossRefGoogle Scholar
  9. Huang, D. S., Huang, K. L., Chen, S. P., Liu, S. Q.,& Yu, J. G. (2008). Rapid reaction-diffusion model for the enantioseparation of phenylalanine across hollow fiber supported liquid membrane. Separation Science and Technology, 43, 259–272. DOI: 10.1080/01496390701787057.CrossRefGoogle Scholar
  10. IUPAC-IUBMB (International Union of Pure and Applied Chemistry-International Union of Biochemistry and Molecular Biology) (2007). Organic and biochemical nomenclature: Symbols and terminology. Research Triangle Park, NC, USA: International Union of Pure and Applied Chemistry.Google Scholar
  11. Juang, R. S.,& Wang, Y. Y. (2002). Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes. Journal of Membrane Science, 207, 241–252. DOI: 10.1016/s0376-7388(02)00254-5.CrossRefGoogle Scholar
  12. Keurentjes, J. T. F., Nabuurs, L. J. W. M.,& Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-x.CrossRefGoogle Scholar
  13. Li, D. C., Cheng, S. W., Wei, D. Z., Ren, Y. H.,& Zhang, D. R. (2007a). Production of enantiomerically pure (S)-β-phenylalanine and (R)-β-phenylalanine by penicillin G acylase from Escherichia coli in aqueous medium. Biotechnology Letters, 29, 1825–1830. DOI: 10.1007/s10529-007-9480-9.CrossRefGoogle Scholar
  14. Li, M. S., Zhao, Y. J., Zhao, S. Y., Xing W. H., & Wong, F. S. (2007b). Resistance analysis for ceramic membrane microfiltration of raw soy sauce. Journal of Membrane Science, 299, 122–129. DOI: 10.1016/j.memsci.2007.04.033.CrossRefGoogle Scholar
  15. Lin, S. H.,& Chen, C. N. (2006). Simultaneous reactive extraction separation of amino acids from water with D2EHPA in hollow fiber contactors. Journal of Membrane Science, 280, 771–780. DOI: 10.1016/j.memsci.2006.02.034.CrossRefGoogle Scholar
  16. Liu, Y. S., Dai, Y. Y.,& Wang, J. D. (1999). Distribution behavior of L-phenylalanine by extraction with di(2-ethylhexyl) phosphoric acid. Separation Science and Technology, 34, 2165–2176. DOI: 10.1081/ss-100100763.CrossRefGoogle Scholar
  17. Lothongkum, A. W., Khemglad, Y., Usomboon, N., & Pancharoen, U. (2009a). Selective recovery of nickel ions from wastewater of stainless steel industry via HFSLM. Journal of Alloys and Compounds, 476, 940–949. DOI: 10.1016/j. jallcom.2008.09.194.CrossRefGoogle Scholar
  18. Lothongkum, A. W., Ramakul, P., Sasomsub, W., Laoharochanapan, S., & Pancharoen, U. (2009b). Enhancement of uranium ion flux by consecutive extraction via hollow fiber supported liquid membrane. Journal of the Taiwan Institute of Chemical Engineers, 40, 518–523. DOI: 10.1016/j.jtice.2009.03.010.CrossRefGoogle Scholar
  19. Lothongkum, A. W., Pancharoen, U., & Prapasawat, T. (2011a). Roles of facilitated transport through HFSLM in engineering applications. In J. Markoš (Ed.), Mass transfer in chemical engineering processes (chapter 9, pp. 177–204). Rijeka, Croatia: InTech Europe. DOI: 10.5772/24343.Google Scholar
  20. Lothongkum, A. W., Pancharoen, U., & Prapasawat, T. (2011b). Treatment of heavy metals from industrial wastewaters using hollow fiber supported liquid membrane. In K. Demadis (Ed.), Water treatment processes (chapter 12, pp. 299–332). New York, NY, USA: Nova Science Publishers.Google Scholar
  21. Mulder, M. H. V. (1995). Polarization phenomena and membrane fouling. In R. D. Noble, & S. A. Stern (Eds.), Membrane separations technology: Principles and applications (chapter 2, pp. 49–50). Amsterdam, The Netherlands: Elsevier.Google Scholar
  22. Naksang, C., Sunsandee, N., Thamphiphit, N., Pancharoen, U., Ramakul, P.,& Leepipatpiboon, N. (2013). Synergistic enantioseparation of rac-phenylalanine via hollow fiber supported liquid membrane. Separation Science and Technology, 48, 867–876. DOI: 10.1080/01496395.2012.719255.CrossRefGoogle Scholar
  23. Pancharoen, U., Wongsawa, T.,& Lothongkum, A. W. (2011). A reaction flux model for extraction of Cu(II) with LIX84I in HFSLM. Separation Science and Technology, 46, 2183–2190. DOI: 10.1080/01496395.2011.595287.CrossRefGoogle Scholar
  24. Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2, 3–14. DOI: 10.1602/neurorx.2.1.3.CrossRefGoogle Scholar
  25. Rathore, N. S., Sonawane, J. V., Kumar, A., Venugopalan, A. K., Singh, R. K., Bajpai, D. D.,& Shukla, J. P. (2001). Hollow fiber supported liquid membrane: a novel technique for separation and recovery of plutonium from aqueous acidic wastes. Journal of Membrane Science, 189, 119–128. DOI: 10.1016/s0376-7388(01)00406-9.CrossRefGoogle Scholar
  26. Rogers, J. D.,& Long, R. L., Jr. (1997). Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions. Journal of Membrane Science, 134, 1–17. DOI: 10.1016/s0376-7388(97)00074-4.CrossRefGoogle Scholar
  27. Saïdat, B., Boudah, F.,& Guermouche, M. H. (2010). High performance liquid chromatography chiral separation of d,l-phenylalanine and d,l-tryptophan with quaternary mobile phase mixture by copper mixed chelate complexation. Analele Universitatii din Bucuresti: Chimie, 19(2), 77–82.Google Scholar
  28. Sprenger, G. A. (2007). Aromatic amino acids. In V. F. Wendisch (Ed.), Amino acid biosynthesis: Pathways, regulation and metabolic engineering (pp. 106–113). New York, NY, USA: Springer. DOI: 10.1007/7171 2006 067.Google Scholar
  29. Sunsandee, N., Leepipatpiboon, N., Ramakul, P.,& Pancharoen, U. (2012). The selective separation of (S)-amlodipine via a hollow fiber supported liquid membrane: Modeling and experimental verification. Chemical Engineering Journal, 180, 299–308. DOI: 10.1016/j.cej.2011.11.068.CrossRefGoogle Scholar
  30. Suren, S., Wongsawa, T., Pancharoen, U., Prapasawat, T.,& Lothongkum, A. W. (2012). Uphill transport and mathematical model of Pb(II) from dilute synthetic lead-containing solutions across hollow fiber supported liquid membrane. Chemical Engineering Journal, 191, 503–511. DOI: 10.1016/j.cej.2012.03.010.CrossRefGoogle Scholar
  31. Tan, B., Luo, G. S., Qi, X.,& Wang, J. D. (2006). Enantioselective extraction of d,l-tryptophan by a new chiral selector: Complex formation with di(2-ethylhexyl)phosphoric acid and O,O′-dibenzoyl-(2R,3R)-tartaric acid. Separation and Purification Technology, 49, 186–191. DOI: 10.1016/j.seppur.2005.09.010.CrossRefGoogle Scholar
  32. Tan, B., Luo, G. S.,& Wang, J. D. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021.CrossRefGoogle Scholar
  33. USFDA (1992). FDA’s policy statement for the development of new stereoisomeric drugs. Chirality, 4, 338–340. DOI: 10.1002/chir.530040513.CrossRefGoogle Scholar
  34. Voet, D., & Voet, J. G. (1990). Biochemistry (chapter 4). New York, NY, USA: Wiley.Google Scholar
  35. Wan, Y. H., Luo, J. Q., & Cui, Z. F. (2010). Membrane application in soy sauce processing. In Z. F. Ciu, & H. S. Muralidhara (Eds.), Membrane technology: A practical guide to membrane technology and applications in food and bioprocessing (chapter 4, pp. 51). Burlington, MA, USA: Butterworth-Heinemann.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand

Personalised recommendations