Skip to main content
Log in

In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Fifteen carbohydrates (d-mannose, d-glucose, d-galactose, methyl-α-d-glucose, l-rhamnose, d-xylose, d-fructose, d-arabinose, dulcitol, mannitol, β-maltose, α-lactose, melibiose, sucrose, and raffinose) and four cyclitols [l-(+)-bornesitol, myo-inositol, per-O-acetyl-1-l-(+)-bornesitol, and quinic acid] were assayed for in vitro ACE inhibition. Of these molecules, per-O-Acetyl-1-l-(+)-bornesitol, quinic acid, methyl-α-d-glucose, d-rhamnose, raffinose, and the disaccharides were determined to be either inactive or weak ACE inhibitors, whereas l-(+)-bornesitol, d-galactose, d-glucose, and myo-inositol exhibited significant ACE inhibition. Molecular docking studies were performed to investigate interactions between active compounds and human ACE (Protein Data Bank, PDB 1O83). The results of various calculations showed that all active sugars bind to the same enzyme region, which is a tunnel directed towards the active site. With the exception of myo-inositol (K i = 13.95 μM, IC50 = 449.2 μM), the active compounds presented similar K i and IC50 values. d-Galactose (K i = 19.6 μM, IC50 = 35.7 μM) and l-(+)-bornesitol (K i = 25.3 μM, IC50 = 41.4 μM) were the most active compounds, followed by d-glucose (K i = 32.9 μM, IC50 = 85.7 μM). Our docking calculations are in agreement with the experimental data and show a new binding region for sugar-like molecules, which may be explored for the development of new ACE inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akif, M., Georgiadis, D., Mahajan, A., Dive, V., Sturrock, E. D., Isaac, R. E., & Acharya, K. R. (2010). High-resolution crystal structures of Drosophila melanogaster angiotensinconverting enzyme in complex with novel inhibitors and antihypertensive drugs. Journal of Molecular Biology, 400, 502–517. DOI: 10.1016/j.jmb.2010.05.024.

    Article  CAS  Google Scholar 

  • Akif, M., Masuyer, G., Schwager, S. L. U., Bhuyan, B. J., Mugesh, G., Isaac, R. E., Sturrock, E. D., & Acharya, K. R. (2011). Structural characterization of angiotensin Iconverting enzyme in complex with a selenium analogue of captopril. The FEBS Journal, 278, 3644–3650. DOI: 10.1111/j.1742-4658.2011.08276.x.

    Article  CAS  Google Scholar 

  • Alderman, C. P. (1996). Adverse effects of the angiotensinconverting enzyme inhibitors. The Annals of Pharmacotherapy, 30, 55–61.

    CAS  Google Scholar 

  • Bakris, G., Sowers, J., Epstein, M., & Williams, M. (2000). Hypertension in patients with diabetes. Why is aggressive treatment essential? Postgraduate Medicine, 107(2), 53–64. DOI: 10.3810/pgm.2000.02.884.

    Article  CAS  Google Scholar 

  • Bautista-Ibáñez, L., Ramírez-Gualito, K., Quiroz-García, B., Rojas-Aguilar, A., & Cuevas, G. (2008). Calorimetric measurement of the CH/π interaction involved in the molecular recognition of saccharides by aromatic compounds. The Journal of Organic Chemistry, 73, 849–857. DOI: 10.1021/jo701926r.

    Article  Google Scholar 

  • Brown, B., & Hall, A. S. (2005). Renin-angiotensin system modulation: The weight of evidence. American Journal of Hypertension, 18(Supplement), 127–133. DOI: 10.1016/j.amjhyper.2005.06.002.

    Article  Google Scholar 

  • Chen, S. J., Chang, C. T., Chung, Y. C., & Chou, S. T. (2007). Studies on the inhibitory effect of Graptopetalum paraguayense E. Walther extracts on the angiotensin converting enzyme. Food Chemistry, 100, 1032–1036. DOI: 10.1016/j.foodchem.2005.10.053.

    Article  CAS  Google Scholar 

  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Jr., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179–5197. DOI: 10.1021/ja00124a002.

    Article  CAS  Google Scholar 

  • Cushman, D. W., Cheung, H. S., Sabo, E. F., & Ondetti, M. A. (1977). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry, 16, 5484–5491. DOI: 10.1021/bi00644a014.

    Article  CAS  Google Scholar 

  • Endringer, D. C., Pezzuto, J. M., Soares, C. M., & Braga, F. C. (2007). l-(+)-Bornesitol. Acta Crystallographica Section E, E63, o1067–o1068. DOI: 10.1107/s1600536806037019.

    Article  Google Scholar 

  • Endringer, D. C., Pezzuto, J. M., & Braga, F. C. (2009). NF-κB inhibitory activity of cyclitols isolated from Hancornia speciosa. Phytomedicine, 16, 1064–1069. DOI: 10.1016/j.phymed.2009.03.022.

    Article  CAS  Google Scholar 

  • Ferreira, S. H., & Rocha e Silva, M. (1965). Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia, 21, 347–349. DOI: 10.1007/bf02144709.

    Article  CAS  Google Scholar 

  • Ferreres, F., Sousa, C., Valentão, P., Seabra, R. M., Pereira, J. A., & Andrade, P. B. (2007). Tronchuda cabbage (Brassica oleracea L. var. costata DC) seeds: Phytochemical characterization and antioxidant potential. Food Chemistry, 101, 549–558. DOI: 10.1016/j.foodchem.2006.02.013.

    Article  CAS  Google Scholar 

  • Fleming, I. (2006). Signaling by the angiotensin-converting enzyme. Circulation Research, 98, 887–896. DOI: 10.1161/01.res.0000217340.40936.53.

    Article  CAS  Google Scholar 

  • Hagiwara, S. Y., Takahashi, M., Shen, Y., Kaihou, S., Tomiyama, T., Yazawa, M., Tamai, Y., Sin, Y., Kazusaka, A., & Terazawa, M. (2005). A phytochemical in the edible Tamogitake mushroom (Pleuroutus cornucopie), d-manitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry, 69, 1603–1605. DOI: 10.1271/bbb.69.1603.

    Article  CAS  Google Scholar 

  • Hooper, N. M., & Turner, A. J. (2003). An ACE structure. Nature Structural & Molecular Biology, 10, 155–157. DOI: 10.1038/nsb0303-155.

    Article  CAS  Google Scholar 

  • Hou, W. C., Chen, H. J., & Lin, Y. H. (2003). Antioxidant peptides with angiotensin converting enzyme inhibitory activities and applications for angiotensin converting enzyme purification. Journal of Agricultural and Food Chemistry, 51, 1706–1709. DOI: 10.1021/jf0260242.

    Article  CAS  Google Scholar 

  • Je, J. Y., Park, P. J., Kwon, J. Y., & Kim, S. K. (2004). A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Journal of Agricultural and Food Chemistry, 52, 7842–7845. DOI: 10.1021/jf0494027.

    Article  CAS  Google Scholar 

  • Koike, H., Ito, K., Miyamoto, M., & Nishino, H. (1980). Effects of long-term blockade of angiotensin converting enzyme with captopril (SQ14,225) on hemodynamics and circulating blood volume in SHR. Hypertension, 2, 299–303. DOI: 10.1161/01.hyp.2.3.299.

    Article  CAS  Google Scholar 

  • Li, G. H., Liu, H., Shi, Y. H., & Le, G. W. (2005). Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. Journal of Pharmaceutical and Biomedical Analysis, 37, 219–224. DOI: 10.1016/j.jpba.2004.11.004.

    Article  CAS  Google Scholar 

  • Lohith, K., Vijayakumar, G. R., Somashekar, B. R., Sivakumar, R., & Divakar, S. (2006). Glycosides and amino acyl esters of carbohydrates as potent inhibitors of angiotensin converting enzyme. European Journal of Medicinal Chemistry, 41, 1059–1072. DOI: 10.1016/j.ejmech.2006.04.005.

    Article  CAS  Google Scholar 

  • Ma, M. S., Bae, I. Y., Lee, H. G., & Yang, C. B. (2006). Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench). Food Chemistry, 96, 36–42. DOI: 10.1016/j.foodchem.2005.01.052.

    Article  CAS  Google Scholar 

  • Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M. Đ., Novaković, S. B., Kaluđerović, G. N., & Kozłowski, H. (2006). Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt(III) complex. Journal of Inorganic Biochemistry, 100, 1568–1574. DOI: 10.1016/j.jinorgbio.2006.05.009.

    Article  Google Scholar 

  • Morris, G. M., Goodesell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662. DOI: 10.1002/(SICI)1096-987X(19981115)19:14〈1639::AID-JCC10〉3.0.CO;2-B.

    Article  CAS  Google Scholar 

  • Rapaport, D. C. (1996). The art of molecular dynamics simulation. New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Sardinha, J., Guieu, S., Deleuze, A., Fernández-Alonso, M. C., Rauter, A. P., Sinaÿ, P., Marrot, J., Jiménez-Barbero, J., & Sollogoub, M. (2007). gem-Difluoro-carbasugars, the cases of mannopyranose and galactopyranose. Carbohydrate Research, 342, 1689–1703. DOI: 10.1016/j.carres.2007.05.021.

    Article  CAS  Google Scholar 

  • Schames, J. R., Henchman, R. H., Siegel, J. S., Sotriffer, C. A., Ni, H. H., & McCammon, J. A. (2004). Discovery of a novel binding trench in HIV integrase. Journal of Medicinal Chemistry, 47, 1879–1881. DOI: 10.1021/jm0341913.

    Article  CAS  Google Scholar 

  • Serra, C. P., Cortes, S. F., Lombardi, J. A., Braga de Oliveira, A., & Braga, F. C. (2005). Validation of a colorimetric assay for the in vitro screening of inhibitors of angiotensin-converting enzyme (ACE) from plant extracts. Phytomedicine, 12, 424–432. DOI: 10.1016/j.phymed.2004. 07.002.

    Article  CAS  Google Scholar 

  • Silva, G. C., Braga, F. C., Lima, M. P., Pesquero, J. L., Lemos, V. S., & Cortes, S. F. (2011). Hancornia speciosa Gomes induces hypotensive effect through inhibition of ACE and increase on NO. Journal of Ethnopharmacology, 137, 709–713. DOI: 10.1016/j.jep.2011.06.031.

    Article  CAS  Google Scholar 

  • Sowers, J. R., & Epstein, M. (1995). Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update. Hypertension, 26, 869–879. DOI: 10.1161/01.hyp.26.6.869.

    Article  CAS  Google Scholar 

  • Sturrock, E. D., Natesh, R., van Rooyen, J. M., & Acharya, K. R. (2004). What’s new in the renin-angiotensin system? Cellular and Molecular Life Sciences, 61, 2677–2686. DOI: 10.1007/s00018-004-4239-0.

    Article  CAS  Google Scholar 

  • Vermeirssen, V., Van Camp, J., & Verstraete, W. (2002). Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. Journal of Biochemical and Biophysical Methods, 51, 75–87. DOI: 10.1016/s0165-022x(02)00006-4.

    Article  CAS  Google Scholar 

  • Watermeyer, J. M., Sewell, B. T., Schwager, S. L., Natesh, R., Corradi, H. R., Acharya, K. R., & Sturrock, E. D. (2006). Structure of testis ACE glycosylation mutants and evidence for conserved domain movement. Biochemistry, 45, 12654–12663. DOI: 10.1021/bi061146z.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise C. Endringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endringer, D.C., Oliveira, O.V. & Braga, F.C. In vitro and in silico inhibition of angiotensin-converting enzyme by carbohydrates and cyclitols. Chem. Pap. 68, 37–45 (2014). https://doi.org/10.2478/s11696-013-0407-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0407-8

Keywords

Navigation