Skip to main content

Advertisement

Log in

DFT study of free radical scavenging activity of erodiol

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Antioxidant activity of erodiol was examined at the M05-2X/6-311+G(d,p) level of theory in the gas and aqueous phases. The structure and energy of radicals and anions of the most stable erodiol rotamer were analyzed. To estimate antioxidant potential of erodiol, different molecular properties were examined: bond dissociation enthalpy, proton affinity together with electron transfer energy, and ionization potential followed by proton dissociation enthalpy. It was found that hydrogen atom transfer is the prevailing mechanism of erodiol behavior in gas; whereas single electron transfer followed by proton transfer and sequential proton loss electron transfer mechanisms represent the thermodynamically preferred reaction paths in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartmess, J. E. (1994). Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98, 6420–6424. DOI: 10.1021/j100076a029.

    Article  CAS  Google Scholar 

  • Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355. DOI: 10.1016/0076-6879(90)86128-i.

    Article  CAS  Google Scholar 

  • Cai, Y. Z., Sun, M., Xing, J., Luo, Q., & Corke, H. (2006). Structure-radical scavenging activity relationship of phenolic compounds from traditional Chinese medical plants. Life Sciences, 78, 2872–2888. DOI: 10.1016/j.lfs.2005.11.004.

    Article  CAS  Google Scholar 

  • Cao, G. H., Sofic, E., & Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Biology and Medicine, 22, 749–760. DOI: 10.1016/s0891-5849(96)00351-6.

    Article  CAS  Google Scholar 

  • de Heer, M. I., Korth, H. G., & Mulder, P. (1999). Poly methoxy phenols in solution: O-H bond dissociation enthalpies, structures, and hydrogen bonding. The Journal of Organic Chemistry, 64, 6969–6975. DOI: 10.1021/jo9901485.

    Article  Google Scholar 

  • Fecka, I., & Cisowski, W. (2005). Tannins and flavonoids from the Erodium cicutarium herb. Zeitschrift für Naturforschung Section B, 60, 555–560.

    CAS  Google Scholar 

  • Foti, M. C., Daquino, C., & Geraci, C. (2004). Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH. radical in alcoholic solutions. The Journal of Organic Chemistry, 69, 2309–2314. DOI: 10.1021/jo035758q.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, A. D., Rabuck, K. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., & Pople, J. A. (2009). Gaussian 09, Revision A1 [computer software]. Wallingford, CT, USA: Gaussian.

    Google Scholar 

  • Glendening, E. D., Badenhoop, J, K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., & Weinhold, F. (2001). NBO 5.0. [computer software]. Madison, WI, USA: Theoretical Chemistry Institute, University of Wisconsin.

    Google Scholar 

  • Hertog, M. G. L., & Hollman, P. C. H. (1996). Potential health effects of the dietary flavonol quercetin. European Journal of Clinical Nutrition, 50, 63–71.

    CAS  Google Scholar 

  • Hillenbrand, M., Zapp, J., & Becker, H. (2004). Depsides from the petals of Papaver rhoeas. Planta Medica, 70, 380–382. DOI: 10.1055/s-2004-818956.

    Article  CAS  Google Scholar 

  • Huynh, M. H. V., & Meyer, T. J. (2007). Proton-coupled electron transfer. Chemical Reviews, 107, 5004–5064. DOI: 10.1021/cr0500030.

    Article  CAS  Google Scholar 

  • Klein, E., & Lukeš, V. (2006). DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action. The Journal of Physical Chemistry A, 110, 12312–12320. DOI: 10.1021/jp063468i.

    Article  CAS  Google Scholar 

  • Klein, E., Lukeš, V., & Iličin, M. (2007). DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics, 336, 51–57. DOI: 10.1016/j.chemphys.2007.05.007.

    Article  CAS  Google Scholar 

  • Kumar, S., & Müller, K. (1999). Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. Journal of Natural Products, 62, 821–823. DOI: 10.1021/np980378z.

    Article  CAS  Google Scholar 

  • Kumar, S., & Müller, K. (2000). Depsides as non-redox inhibitors of leukotriene B4 biosynthesis and HaCaT cell growth, 2. Novel analogues of obtusatic acid. European Journal of Medicinal Chemistry, 35, 405–411. DOI: 10.1016/s0223-5234(00)00132-x.

    Article  CAS  Google Scholar 

  • Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004a). Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theoretical Chemistry Accounts, 111, 210–216. DOI: 10.1007/s00214-003-0544-1.

    Article  CAS  Google Scholar 

  • Leopoldini, M., Pitarch, I. P., Russo, N., & Toscano, M. (2004b). Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. The Journal of Physical Chemistry A, 108, 92–96. DOI: 10.1021/jp035901j.

    Article  CAS  Google Scholar 

  • Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004c). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108, 4916–4922. DOI: 10.1021/jp037247d.

    Article  CAS  Google Scholar 

  • Litwinienko, G., & Ingold, K. U. (2007). Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Accounts of Chemical Research, 40, 222–230. DOI: 10.1021/ar0682029.

    Article  CAS  Google Scholar 

  • Lv, P. C., Xiao, Z. P., Fang, R. Q., Li, H. Q., Zhu, H. L., & Liu, C. H. (2009). Synthesis, characterization, and structure-activity relationship analysis of novel depsides as potential antibacterials. European Journal of Medicinal Chemistry, 44, 1779–1787. DOI: 10.1016/j.ejmech.2008.04.019.

    Article  CAS  Google Scholar 

  • Mandado, M., Graña, A. M., & Mosquera, R. A. (2004). AIM charge density study of simple natural phenolic antioxidants. Chemical Physics Letters, 400, 169–174. DOI: 10.1016/j.cplett.2004.10.097.

    Article  CAS  Google Scholar 

  • Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B, 113, 6378–6396. DOI: 10.1021/jp810292n.

    Article  CAS  Google Scholar 

  • Marković, Z., Mentus, S. V., & Marković, J. M. D. (2009). Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: Implications on in vitro antioxidant activity. The Journal of Physical Chemistry A, 113, 14170–14179. DOI: 10.1021/jp907071v.

    Article  Google Scholar 

  • Marković, Z. S., & Manojlović, N. T. (2010). Analytical characterization of lichexanthone in lichen: HPLC, UV spectroscopic, and DFT analysis of lichexanthone extracted from Laurera benguelensis (Mull. Arg.) Zahlbr. Monatshefte für Chemie, 141, 945–952. DOI: 10.1007/s00706-010-0349-6.

    Article  Google Scholar 

  • Marković, Z., Milenković, D., Đorović, J., Marković, J. M. D., Stepanić, V., Lučić, B., & Amić, D. (2012a). PM6 and DFT study of free radical scavenging activity of morin. Food Chemistry, 134, 1754–1760. DOI: 10.1016/j.foodchem.2012.03.124.

    Article  Google Scholar 

  • Marković, Z., Milenković, D., Đorović, J., Marković, J. M. D., Stepanić, V., Lučić, B., & Amić, D. (2012b). Free radical scavenging activity of morin 2′-O phenoxide anion. Food Chemistry, 135, 2070–2077. DOI: 10.1016/j.foodchem.2012.05.119.

    Article  Google Scholar 

  • McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussianbasis sets for molecular calculations. 1. Second row atoms, Z = 11–18. Journal of Chemical Physics, 72, 5639–5648. DOI: 10.1063/1.438980.

    Article  CAS  Google Scholar 

  • McQuarrie, D. A. (2000). Statistical mechanics. Sausalito, CA, USA: University Science Books.

    Google Scholar 

  • Merrick, J. P., Moran, D., & Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. The Journal of Physical Chemistry A, 111, 11683–11700. DOI: 10.1021/jp073974n.

    Article  CAS  Google Scholar 

  • Meyer, T. J., Huynh, M. H. V., & Thorp, H. H. (2007). The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angewandte Chemie International Edition, 46, 5284–5304. DOI: 10.1002/anie.200600917.

    Article  CAS  Google Scholar 

  • Moa, M. J. G., Mandado, M., & Mosquera, R. A. (2006). QTAIM charge density study of natural cinnamic acids. Chemical Physics Letters, 424, 17–22. DOI: 10.1016/j.cplett.2006.04.034.

    Article  Google Scholar 

  • Musialik, M., & Litwinienko, G. (2005). Scavenging of DPPH. radicals by vitamin E is accelerated by its partial ionization: The role of sequential proton loss electron transfer. Organic Letters, 7, 4951–4954. DOI: 10.1021/ol051962j.

    Article  CAS  Google Scholar 

  • Neamati, N., Hong, H. X., Mazumder, A., Wang, S. M., Sunder, S., Nicklaus, M. C., Milne, G. W. A., Proksa, B., & Pommier, Y. (1997). Depsides and depsidones as inhibitors of HIV-1 integrase: Discovery of novel inhibitors through 3D database searching. Journal of Medicinal Chemistry, 40, 942–951. DOI: 10.1021/jm960759e.

    Article  CAS  Google Scholar 

  • Nielsen, J., Nielsen, P. H., & Frisvad, J. C. (1999). Fungal depside, guisinol, from a marine derived strain of Emericella unguis. Phytochemistry, 50, 263–265. DOI: 10.1016/s0031-9422(98)00517-2.

    Article  CAS  Google Scholar 

  • Ono, M., Masuoka, C., Koto, M., Tateishi, M., Komatsu, H., Kobayashi, H., Igoshi, K., Ito, Y., Okawa, M., & Nohara, T. (2002). Antioxidant ortho-benzoyloxyphenyl acetic acid ester, vaccihein A, from the fruit of rabbiteye blueberry (Vaccinium ashei). Chemical and Pharmaceutical Bulletin, 50, 1416–1417. DOI: 10.1248/cpb.50.1416.

    Article  CAS  Google Scholar 

  • Proksa, B., Adamcová, J., Šturdová, M., & Fuska, J. (1994). Metabolites of Pseudevernia furfuracea (L.) Zopf. and their inhibition potential of proteolytic enzymes. Pharmazie, 49, 282–283.

    CAS  Google Scholar 

  • Raghavachari, K., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. Basis set for correlated wave-functions. Journal of Chemical Physics, 72, 650–654. DOI: 10.1063/1.438955.

    Article  Google Scholar 

  • Reynertson, K. A., Wallace, A. M., Adachi, S., Gil, R. R., Yang, H., Basile, M. J., D’Armiento, J., Weinstein, I. B., & Kennelly, E. J. (2006). Bioactive depsides and anthocyanins from Jaboticaba (Myrciaria cauliflora). Journal of Natural Products, 69, 1228–1230. DOI: 10.1021/np0600999.

    Article  CAS  Google Scholar 

  • Rice-Evans, C. A., & Miller, N. J. (1996). Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions, 24, 790–795. DOI: 10.1042/bst0240790.

    CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20, 933–956. DOI: 10.1016/0891-5849(95)02227-9.

    Article  CAS  Google Scholar 

  • Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M. (2010). Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Journal of Molecular Structure: THEOCHEM, 952, 25–30. DOI: 10.1016/j.theochem.2010.04.002.

    Article  Google Scholar 

  • Trouillas, P., Marsal, P., Siri, D., Lazzaroni, R., & Duroux, J. L. (2006). A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chemistry, 97, 679–688. DOI: 10.1016/j.foodchem.2005.05.042.

    Article  CAS  Google Scholar 

  • Wayner, D. D. M., Lusztyk, E., & Ingold, K. U. (1996). Application of photoacoustic calorimetry to the measurement of the O-H bond strength in vitamin E (α- and δ-tocopherol) and related phenolic antioxidants. The Journal of Organic Chemistry, 61, 6430–6433. DOI: 10.1021/jo952167u.

    Article  CAS  Google Scholar 

  • Weinhold, F., & Landis, C. R. (2005). Valency and bonding: A natural bond orbital donor-acceptor perspective. New York, NY, USA: Cambridge Academic Press.

    Book  Google Scholar 

  • Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123, 1173–1183. DOI: 10.1021/ja002455u.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Miura, Y., Kinoshita, Y., Higuchi, M., Yamada, Y., Murakami, A., Ohigashi, H., & Koshimizu, K. (1995). Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation. Chemical and Pharmaceutical Bulletin, 43, 1388–1390. DOI: 10.1248/cpb.43.1388.

    Article  CAS  Google Scholar 

  • Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382. DOI: 10.1021/ct0502763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Marković.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marković, Z., Đorović, J., Dekić, M. et al. DFT study of free radical scavenging activity of erodiol. Chem. Pap. 67, 1453–1461 (2013). https://doi.org/10.2478/s11696-013-0402-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0402-0

Keywords

Navigation