Skip to main content
Log in

Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) was synthesized by chemical oxidation of aniline in the presence of mixtures of water-soluble poly(sulfonic acids) of different nature. Under these conditions, the use of polyacid templates leads to the formation of interpolymer complexes of PANI and polyacid mixtures. The obtained PANI complexes were characterized by UV, visible, near IR, and Fourier transform infrared spectroscopy. It was shown that the rigidity of the polyacid backbone and the composition of a polyacid mixture affect the electronic structure of PANI complexes and the duration of the induction period of aniline oxidation. Domination of the more rigid-backbone template in the synthesis of PANI complexes with mixtures of the rigid- and flexible-backbone polyacids was observed. According to the viscometry and FTIR spectroscopic data, the reason of the domination is the existence of the intermolecular interaction between the polyacids in the mixture. In this case, duration of the induction period of aniline oxidation was between these values for pure polyacids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyer, M. I., Quillard, S., Rebourt, E., Louarn, G., Buisson, J. P., Monkman, A., & Lefrant, S. (1998). Vibrational analysis of polyaniline: A model compound approach. The Journal of Physical Chemistry B, 102, 7382–7392. DOI: 10.1021/jp972652o.

    Article  CAS  Google Scholar 

  • Boyer, M. L., Quillard, S., Louarn, G., Froyer, G., & Lefrant, S. (2000). Vibrational study of the FeCl3-doped dimer of polyaniline. A good model compound of emeraldine salt. The Journal of Physical Chemistry B, 104, 8952–8961. DOI: 10.1021/jp000946v.

    Article  CAS  Google Scholar 

  • Elliott, A. (1969). Infra-red spectra and structure of organic long-chain polymers. London, UK: Edward Arnold.

    Google Scholar 

  • Epstein, A. J., Ginder, J. M., Zuo, F., Woo, H. S., Tanner, D. B., Richter, A. F., Angelopoulos, M., Huang, W. S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline: Effect of protonation in emeraldine. Synthetic Metals, 21, 63–70. DOI: 10.1016/0379-6779(87)90067-1.

    Article  CAS  Google Scholar 

  • Fisher, L. W., Sochor, A. R., & Tan, J. S. (1977). Chain characteristics of poly(2-acrylamido-2-methylpropanesulfonate) polymers. 1. Light-Scattering and intrinsic-viscosity studies. Macromolecules, 10, 949–954. DOI: 10.1021/ma60059a012.

    Article  CAS  Google Scholar 

  • Gribkova, O. L., Nekrasov, A. A., Trchova, M., Ivanov, V. F., Sazikov, V. I., Razova, A. B., Tverskoy, V. A., & Vannikov, A. V. (2011). Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer, 52, 2474–2484. DOI: 10.1016/j.polymer.2011.04.003.

    Article  CAS  Google Scholar 

  • Guseva, M. A., Isakova, A. A., Gribkova, O. L., Tverskoi, V. A., Ivanov, V. F., Vannikov, A. V., & Fedotov, Y. A. (2007). Matrix polymerization of aniline in the presence of polyamides containing sulfo acid groups. Polymer Science Series A, 49, 4–11. DOI: 10.1134/s0965545x07010026.

    Article  Google Scholar 

  • Hechavarría, L., Hu, H. L., & Rincon, M. E. (2003). Polyaniline-poly(2-acrylamido-2-methyl-1-propanosulfonic acid) composite thin films: structure and properties. Thin Solid Films, 441, 56–62. DOI: 10.1016/s0040-6090(03)00864-2.

    Article  Google Scholar 

  • Hu, H. L., Saniger, J. M., & Bañuelos, J. G. (1999). Thin films of polyaniline-polyacrylic acid composite by chemical bath deposition. Thin Solid Films, 347, 241–247. DOI: 10.1016/s0040-6090(99)00039-5.

    Article  CAS  Google Scholar 

  • Ivanov, V. F., Gribkova, O. L., Cheberyako, K. V., Nekrasov, A. A., Tverskoi, V. A., & Vannikov, A. V. (2004). Template synthesis of polyaniline in the precence of poly-(2-acrylamido-2-methyl-1-propanesulfonic acid). Russian Journal of Electrochemistry, 40, 299–304. DOI: 10.1023/b:ruel.0000019668.68527.cc.

    Article  CAS  Google Scholar 

  • Ivanov, V. F., Isakova, A. A., Gribkova, O. L., Nekrasov, A. A., Bogdanov, A. N., Vannikov, A. V., & Tverskoi, V. A. (2009). Peculiarities of polyaniline matrix synthesis in the presence of mixtures of different types of matrices and investigation of properties of formed interpolymer complexes. Protection of Metals and Physical Chemistry of Surfaces, 45, 548–552. DOI: 10.1134/s2070205109050086.

    Article  CAS  Google Scholar 

  • Ivanov, V. F., Gribkova, O. L., Omelchenko, O. D., Nekrasov, A. A., Tverskoy, V. A., & Vannikov, A. V. (2010). Effect of matrix domination in PANI interpolymer complexes with polyamidosulfonic acids. Journal of Solid State Electrochemistry, 14, 2011–2019. DOI: 10.1007/s10008-010-1049-1.

    Article  CAS  Google Scholar 

  • Kang, E. T., Neoh, K. G., & Tan, K. L. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23, 277–324. DOI: 10.1016/s0079-6700(97)00030-0.

    Article  CAS  Google Scholar 

  • Kirsh, Y. E., Fedotov, Y. A, Iudina, N. N., Artemov, D. Yu., Yanul’, N. A., & Nekrasova, T. N. (1991). On polyelectrolyte properties of sulfo-containing polyamides on the base of isoand terephthalic acids in aqueous solution. Polymer Science A, 33, 1127–1134.

    CAS  Google Scholar 

  • Li, Y., Ying, B. Y., Hong, L. J., & Yang, M. J. (2010). Watersoluble polyaniline and its composite with poly(vinyl alcohol) for humidity sensing. Synthetic Metals, 160, 455–461. DOI: 10.1016/j.synthmet.2009.11.031.

    Article  CAS  Google Scholar 

  • Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, J. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. San Diego, CA, USA: Academic Press.

    Google Scholar 

  • MacDiarmid, A. G., & Epstein, A. J. (1994). The concept of secondary doping as applied to polyaniline. Synthetic Metals, 65, 103–116. DOI: 10.1016/0379-6779(94)90171-6.

    Article  CAS  Google Scholar 

  • Nekrasov, A. A., Ivanov, V. F., & Vannikov, A. V. (2000). Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. Journal of Electroanalytical Chemistry, 482, 11–17. DOI: 10.1016/s0022-0728(00)00005-x.

    Article  CAS  Google Scholar 

  • Omełchenko, O. D., Gribkova, O. L., Nekrasov, A. A., Tverskoi, V. A., Ivanov, V. F., & Vannikov, A. V. (2011). Nonadditive phenomena during polyaniline synthesis in the presence of mixtures of rigid-chain and flexible-chain polymer sulfoacids and their effect on properties of obtained interpolymer complexes. Protection of Metals and Physical Chemistry of Surfaces, 47, 503–511. DOI: 10.1134/s2070205111040149.

    Article  Google Scholar 

  • Pashkin, I. I., Tverskoi, V. A., & Pravednikov, A. N. (1987). Charge-transfer complexes of unit-type heterogeneous trinitrofluorenone-containing polymers. Polymer Science A, 29, 1631–1637.

    CAS  Google Scholar 

  • Pavlov, G. M., Zaitseva, I. I., Gubarev, A. S., Gavrilova, I. I., & Panarin, E. F. (2006). Diffusion-viscometric analysis and conformational characteristics of sodium polystyrenesulfonate molecules. Russian Journal of Applied Chemistry, 79, 1490–1493. DOI: 10.1134/s1070427206090187.

    Article  CAS  Google Scholar 

  • Ping, Z. (1996). In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92, 3063–3067. DOI: 10.1039/ft9969203063.

    Article  CAS  Google Scholar 

  • Quillard, S., Louarn, G., Buisson, J. P., Boyer, M., Lapkowski, M., Pron, A., & Lefrant, S. (1997). Vibrational spectroscopic studies of the isotope effects in polyaniline. Synthetic Metals, 84, 805–806. DOI: 10.1016/s0379-6779(96)04155-0.

    Article  CAS  Google Scholar 

  • Razova, A. B., Gribkova, O. L., Nekrasov, A. A., Ivanov, V. F., Tverskoi, V. A., & Vannikov, A. V. (2010). Influence of structure of polyacid on synthesis and properties of interpolymer polyaniline complexes. Protection of Metals and Physical Chemistry of Surfaces, 46, 540–545. DOI: 10.1134/s2070205110050060.

    Article  CAS  Google Scholar 

  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies. New York, NY, USA: Wiley.

    Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006.

    Article  CAS  Google Scholar 

  • Sun, L. F., Liu, H. B., Clark, R., & Yang, S. C. (1997). Double-strand polyaniline. Synthetic Metals, 84, 67–68. DOI: 10.1016/s0379-6779(96)03839-8.

    Article  CAS  Google Scholar 

  • Tarver, J., Yoo, J. E., Dennes, T. J., Schwartz, J., & Loo, Y. L. (2009). Polymer acid doped polyaniline is electrochemically stable beyond pH9. Chemistry of Materials, 21, 280–286. DOI: 10.1021/cm802314h.

    Article  CAS  Google Scholar 

  • Tengstedt, C., Crispin, A., Hsu, C. H., Zhang, C., Parker, I. D., Salaneck, W. R., & Fahlman, M. (2005). Study and comparison of conducting polymer hole injection layers in light emitting devices. Organic Electronics, 6, 21–33. DOI: 10.1016/j.orgel.2005.02.001.

    Article  CAS  Google Scholar 

  • Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical report). Pure and Applied Chemistry, 83, 1803–1817. DOI: 10.1351/pac-rep-10-02-01.

    Article  Google Scholar 

  • Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6.

    Article  Google Scholar 

  • Wessling, B. (2007). Conductive polymers as organic nanometals. In T. A. Skotheim, & J. R. Reynolds (Eds.), Handbook of conducting polymers: Conjugated polymers. Processing and applications (3rd ed., pp. 1–23). London, UK: Taylor & Francis.

    Google Scholar 

  • Yang, S. M., Chen, W. M., & You, K. S. (1997). The properties of polyaniline-polyelectrolyte complexes. Synthetic Metals, 84, 77–78. DOI: 10.1016/s0379-6779(96)03844-1.

    Article  CAS  Google Scholar 

  • Yoo, J. E., Cross, J. L., Bucholz, T. L., Lee, K. S., Espe, M. P., & Loo, Y. L. (2007). Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. Journal of Materials Chemistry, 17, 1268–1275. DOI: 10.1039/b618521e.

    Article  CAS  Google Scholar 

  • Yoo, J. E., Bucholz, T. L., Jung, S., & Loo, Y. L. (2008). Narrowing the size distribution of the polymer acid improves PANI conductivity. Journal of Materials Chemistry, 18, 3129–3135. DOI: 10.1039/b802829j.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana L. Gribkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gribkova, O.L., Omelchenko, O.D., Trchová, M. et al. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids. Chem. Pap. 67, 952–960 (2013). https://doi.org/10.2478/s11696-013-0384-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0384-y

Keywords

Navigation