Skip to main content
Log in

Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The main purpose of the present paper was to apply the Laser Doppler Anemometry (LDA) technique to measure turbulent liquid flow in a Kenics static mixer. The LDA set-up was a one-channel backscatter system with argon-ion laser. Measurements in the static mixer were carried out for three values of the Reynolds number: 5000, 10000, and 18000. Water was used as the process liquid. Values of the axial and tangential components of the local, mean, and root mean square velocities were measured inside the static mixer. It was observed that the shape of the velocity profile depends strongly on the Reynolds number, Re, as well as on the axial, h, and radial, α, position of the measurement point. Strong dependence of the velocity fluctuations on the Reynolds number was found in the investigated range of Re and the measurement point position. Furthermore, one-dimensional energy spectra of the velocity fluctuations were also obtained by means of the Fast Fourier Transform. Fluctuation spectra of the axial and tangential velocities provided information about the energy density of velocity fluctuations in the observed range of Reynolds numbers. A study of the energy spectra led to the conclusion that the energy density increases with the increasing radial distance from the mixer walls at constant values of h, Re, and α. Minor variations in the mean value of the energy density, E, were observed together with variations of the measurement point angular position, α. In addition, it was observed that an increase of the Reynolds number causes significant increase of the power spectral density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamiak, I., & Jaworski, Z. (2001). An experimental investigations of non-Newtonian liquid flow in a static Kenics mixer. Chemical and Process Engineering, 22(3B), 175–180. (in Polish)

    Google Scholar 

  • Adamiak, I., & Jaworski, Z. (2004). A non-Newtonian fluid turbulent flow in the kenics static mixer. Chemical and Process Engineering, 25, 535–541. (in Polish)

    CAS  Google Scholar 

  • Albrecht, H. E., Borys, M., Damaschke, N., & Tropea, C. (2003). Laser Doppler and phase Doppler measurement techniques. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Baldi, S., & Yianneskis, M. (2004). On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements. Chemical Engineering Science, 59, 2659–2671. DOI: 10.1016/j.ces.2004.03. 021.

    Article  CAS  Google Scholar 

  • Barrué, H., Karoui, A., Le Sauze, N., Costes, J., & Illy, F. (2001). Comparison of aerodynamics and mixing mechanisms of three mixers: Oxynator™ gas-gas mixer, KMA and SMI static mixers. Chemical Engineering Journal, 84, 343–354. DOI: 10.1016/s1385-8947(01)00128-0.

    Article  Google Scholar 

  • Baudou, C., Xuereb, C., Costes, J., & Bertrand, J. (2000). Laser Doppler measurements of turbulent parameters in different multiple-propeller systems. Chemical Engineering & Technology, 23, 257–266. DOI: 10.1002/(SICI)1521-4125(200003)23:3<257::AID-CEAT257>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  • Bell, W. A. (1986). Spectral analysis of laser velocimeter data with the slotted correlation method. In Proceedings of the AIAA/ASME 4th Fluid Dynamics, Plasma Dynamics and Lasers Conference, May 12–14, 1986 (AIAA paper 86-1102). Atlanta, GA, USA.

    Google Scholar 

  • Benedict, L. H., Nobach, H., & Tropea, C. (2000). Estimation of turbulent velocity spectra from laser Doppler data. Measurement Science and Technology, 11, 1089–1104. DOI: 10.1088/0957-0233/11/8/301.

    Article  CAS  Google Scholar 

  • Crowe, C., Sommerfeld, M., & Tsuji, Y. (1998). Multiphase flows with droplets and particles. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Darelius, A., Rasmuson, A., Niklasson Björn, I., & Folestad, S. (2007). LDA measurements of near wall powder velocities in a high shear mixer. Chemical Engineering Science, 62, 5770–5776. DOI: 10.1016/j.ces.2007.06.015.

    Article  CAS  Google Scholar 

  • Deshpande, S. S., Sathe, M. J., & Joshi, J. B. (2009). Evaluation of local turbulent energy dissipation rate using PIV in jet loop reactor. Industrial & Engineering Chemistry Research, 48, 5046–5057. DOI: 10.1021/ie8007924.

    Article  CAS  Google Scholar 

  • Forrest, S., Bridgwater, J., Mort, P. R., Litster, J., & Parker, D. J. (2003). Flow patterns in granulating systems. Powder Technology, 130, 91–96. DOI: 10.1016/s0032-5910(02)00232-2.

    Article  CAS  Google Scholar 

  • Goldstein, R. J. (1996). Fluid mechanics measurements (2nd ed.). Philadelphia, PA, USA: Taylor & Francis.

    Google Scholar 

  • Habchi, C, Lemenand, T, Della Valle, D., & Peerhossaini, H. (2010). Turbulent mixing and residence time distribution in novel multifunctional heat exchangers-reactors. Chemical Engineering and Processing, 49, 1066–1075. DOI: 10.1016/j.cep.2010.08.007.

    Article  CAS  Google Scholar 

  • Hobbs, D. M., & Muzzio, F. J. (1998). Reynolds number effects on laminar mixing in the Kenics static mixer. Chemical Engineering Journal, 70, 93–104. DOI: 10.1016/s0923-0467(98)00065-7.

    CAS  Google Scholar 

  • Ibsen, C. H., Solberg, T., Hjertager, B. H., & Johnsson, F. (2002). Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles. Experimental Thermal and Fluid Science, 26, 851–859. DOI: 10.1016/s0894-1777(02)00196-6.

    Article  CAS  Google Scholar 

  • Jaffer, S. A., & Wood, P. E. (1998). Quantification of laminar mixing in the Kenics static mixer: An experimental study. The Canadian Journal of Chemical Engineering, 76, 516–521. DOI: 10.1002/cjce.5450760323.

    Article  CAS  Google Scholar 

  • James, R. N., Babcock, W. R., & Seifert, H. S. (1968). A laser-Doppler technique for the measurement of particle velocity. AIAA Journal, 6(1), 160–162.

    Article  Google Scholar 

  • Kaci, H. M., Lemenand, T., Della Valle, D., & Peerhossaini, H. (2009). Effects of embedded streamwise vorticity on turbulent mixing. Chemical Engineering and Processing: Process Intensification, 48, 1457–1474. DOI: 10.1016/j.cep.2009.08.002.

    Google Scholar 

  • Karoui, A., LeSauze, N., Costes, J., & Bertrand, J. (1997). Experimental and numerical study of flow at the outlet of Sulzer SMV static mixers. Récents Progr`es en Génie des Procédés, 11(51), 323–330.

    CAS  Google Scholar 

  • Kroon, P. S., Schuitmaker, A., Jonker, H. J. J., Tummers, M. J., Hensen, A., & Bosveld, F. C. (2010). An evaluation by laser Doppler anemometry of the correction algorithm based on Kaimal co-spectra for high frequency losses of EC flux measurements of CH4 and N2O. Agricultural and Forest Meteorology, 150, 794–805. DOI: 10.1016/j.agrformet.2009.08.009.

    Article  Google Scholar 

  • Kumara, W. A. S., Elseth, G., Halvorsen, B. M., & Melaaen, M. C. (2010). Comparison of Particle Image Velocimetry and Laser Doppler Anemometry measurement methods applied to the oil-water flow in horizontal pipe. Flow Measurement and Instrumentation, 21, 105–117. DOI: 10.1016/j.flowmeasinst.2010.01.005.

    Article  Google Scholar 

  • Laurenzi, F., Coroneo, M., Montante, G., Paglianti, A., & Magelli, F. (2009). Experimental and computational analysis of immiscible liquid-liquid dispersions in stirred vessels. Chemical Engineering Research and Design, 87, 507–514. DOI: 10.1016/j.cherd.2008.12.007.

    Article  CAS  Google Scholar 

  • Leitner, M., Wünsch, O., & Böhme, G. (2003). Dreidimensionale LDV und FEM zur Strömungsanalyse in statischen Mischelementen. Forschung im Ingenieurwesen, 68(1), 39–50. DOI: 10.1007/s10010-003-0109-4. (in German)

    Article  Google Scholar 

  • Lu, Y., Glass, D. H., & Easson, W. J. (2009). An investigation of particle behavior in gas-solid horizontal pipe flow by an extended LDA technique. Fuel, 88, 2520–2531. DOI: 10.1016/j.fuel.2009.02.038.

    Article  CAS  Google Scholar 

  • Lui, S. W., Meneveau, C., & Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119. DOI: 10.1017/s0022112094002296.

    Article  Google Scholar 

  • Mokrani, A., Castelain, C., & Peerhossaini, H. (2009). Experimental study of the influence of the rows of vortex generators on turbulence structure in a tube. Chemical Engineering and Processing: Process Intensification, 48, 659–671. DOI: 10.1016/j.cep.2008.07.009.

    Article  CAS  Google Scholar 

  • Paál, G., Angster, J., Garen, W., & Miklós, A. (2006). A combined LDA and flow-visualization study on flue organ pipes. Experiments in Fluids, 40, 825–835. DOI: 10.1007/s00348-006-0114-0.

    Article  Google Scholar 

  • Paul, E. L., Atiemo-Obeng, V., & Kresta, S. M. (2003). Handbook of industrial mixing: science and practice. Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  • Peryt-Stawiarska, S., & Jaworski, Z. (2007). Large eddy simulations of the Newtonian fluid flow through a Kenics static mixer. Chemical and Process Engineering, 28, 435–444.

    Google Scholar 

  • Peryt-Stawiarska, S., & Jaworski, Z. (2008). Fluctuations of the non-Newtonian fluid flow in a Kenics static mixer: An experimental study. Polish Journal of Chemical Technology, 10(3), 35–37. DOI: 10.2478/v10026-008-0033-3.

    Article  CAS  Google Scholar 

  • Pope, S. B. (2000). Turbulent flows. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Song, H. S., & Han, S. P. (2005). A general correlation for pressure drop in a Kenics static mixer. Chemical Engineering Science, 60, 5696–5704. DOI: 10.1016/j.ces.2005.04.084.

    Article  CAS  Google Scholar 

  • Szalai, E. S., & Muzzio, F. J. (2003). Fundamental approach to the design and optimization of static mixers. AIChE Journal, 49, 2687–2699. DOI: 10.1002/aic.690491103.

    Article  CAS  Google Scholar 

  • Tran, A. L. H., Litster, J. D., Seville, J. P. K., Ingram, A., & Fan, X. F. (2006). Dry and cohesive powders in vertical axis high shear mixers using positron emission particle tracking (PEPT). In Proceedings of the 5th World Congress on Particle Technology, April 23–27, 2006. Orlando, FL, USA: The American Institute of Chemical Engineers.

    Google Scholar 

  • Tropea, C., Yarin, A. L., & Foss, J. F. (Eds.) (2007). Springer Handbook of experimental fluid mechanics. Berlin, Germany: Springer.

    Google Scholar 

  • van Wageningen, W. F. C., Mudde, R. F., & van den Akker, H. E. A. (2003). Numerical investigation into mixing of particle-laden flows in a Kenics static mixer. In Proceedings of the 11th European Conference Mixing (pp. 137–144), October 14–17, 2003. Bamberg, Germany.

    Google Scholar 

  • van Wageningen, W. F. C., Kandhai, D., Mudde, R. F., & van den Akker, H. E. A. (2004). Dynamic flow in a Kenics static mixer: An assessment of various CFD methods. AIChE Journal, 50, 1684–1696. DOI: 10.1002/aic.10178.

    Article  Google Scholar 

  • Wiklund, J. A., Stading, M., Pettersson, A. J., & Rasmuson, A. (2006). A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow. AIChE Journal, 52, 484–495. DOI: 10.1002/aic.10653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzislaw Jaworski.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murasiewicz, H., Jaworski, Z. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry. Chem. Pap. 67, 1188–1200 (2013). https://doi.org/10.2478/s11696-013-0375-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0375-z

Keywords

Navigation