Skip to main content
Log in

Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Olive oil mill wastewater (OMWW) is very rich in phenolic compounds especially the key compounds of caffeic acid (CA), hydroxytyrosol (HTY), and tyrosol (TY). Therefore, the development of new and effective analytical and industrial methods for the separation and concentration of these valuable compounds has attracted great attention in the last decades. In this study, a selective transport and separation method for CA, HTY, and TY from OMWW samples, obtained from different olive orchards, using a new bulk liquid membrane (BLM) procedure was developed. Various factors influencing the transport efficiency such as pH of the source and receiving phases, nature and volume of the organic membrane, stirring rate, and transport time were investigated and optimized. Under optimal experimental conditions, the transport efficiencies of CA, HTY, and TY from the OMWW samples of 90.1 %, 28.4 %, and 34.9 % were obtained, respectively. Relative standard deviations (RSDs, n = 7) were found to be 4.1 %, 3.8 %, and 3.0 % and the limits of detection (LODs) obtained were 0.001 mg L−1, 0.011 mg L−1, and 0.008 mg L−1, for CA, HTY, and TY, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben Sassi, A., Boularbah, A., Jaouad, A., Walker, G., & Boussaid, A. (2006). A comparison of olive oil mill wastewaters (OMW) from three different processes in Morocco. Process Biochemistry, 41, 74–78. DOI: 10.1016/j.procbio.2005.03.074.

    Article  CAS  Google Scholar 

  • Bertin, L., Ferri, F., Marchetti, L., & Fabio, F. (2010). Valorization of olive mill wastewater through liquid-solid extraction of the phenolic fraction. Journal of Biotechnology, 150(Supplement), 195. DOI: 10.1016/j.jbiotec.2010.08.508.

    Article  Google Scholar 

  • De Leonardis, A., Macciola, V., Lembo, G., Aretini, A., & Nag, A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chemistry, 100, 998–1004. DOI: 10.1016/j.foodchem.2005.10.057.

    Article  Google Scholar 

  • DellaGreca, M., Previtera, L., Temussi, F., & Zarrelli, A. (2004). Low-molecular-weight components of olive oil mill waste-waters. Phytochemical Analysis, 15, 184–188. DOI: 10.1002/pca.766.

    Article  CAS  Google Scholar 

  • De Marco, E., Savarese, M., Paduano, A., & Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chemistry, 104, 858–867. DOI: 10.1016/j.foodchem.2006.10.005.

    Article  Google Scholar 

  • Fki, I., Allouche, N., & Sayadi, S. (2005). The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chemistry, 93, 197–204. DOI: 10.1016/j.foodchem.2004.09.014.

    Article  CAS  Google Scholar 

  • Isidori, M., Lavorgna, M., Nardelli, A., & Parrella, A. (2005). Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. Journal of Agricultural and Food Chemistry, 53, 8414–8417. DOI: 10.1021/jf0511695.

    Article  CAS  Google Scholar 

  • Jönsson, J. Å., & Mathiasson, L. (1999). Liquid membrane extraction in analytical sample preparation: I. Principles. TrAC Trends in Analytical Chemistry, 18, 318–325. DOI: 10.1016/s0165-9936(99)00102-8.

    Article  Google Scholar 

  • Khoufi, S., Aloui, F., & Sayadi, S. (2008). Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. Journal of Hazardous Materials, 151, 531–539. DOI: 10.1016/j.jhazmat.2007.06.017.

    Article  CAS  Google Scholar 

  • Knutsson, M., Lundh, J., Mathiasson, L., Jönsson, J. Å., & Sundin, P. (1996). Supported liquid membranes for the extraction of phenolic acids from circulating nutrient solutions. Analytical Letters, 29, 1619–1635. DOI: 10.1080/00032719608001509.

    Article  CAS  Google Scholar 

  • Lafka, T. I., Lazou, A. E., Sinanoglou, V. J., & Lazos, E. S. (2011). Phenolic and antioxidant potential of olive oil mill wastes. Food Chemistry, 125, 92–98. DOI: 10.1016/j.foodchem.2010.08.041.

    Article  CAS  Google Scholar 

  • Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J. C., Lorquin, J., Delattre, M., Simon, J. L., Asther, M., & Labat, M. (2001). Simple phenolic content in olive oil residues as a function of extraction systems. Food Chemistry, 75, 501–507. DOI: 10.1016/s0308-8146 (01)00227-8.

    Article  CAS  Google Scholar 

  • López-López, J. A., Mendiguchía, C., Pinto, J. J., & Moreno, C. (2010). Liquid membranes for quantification and speciation of trace metals in natural waters. TrAC Trends in Analytical Chemistry, 29, 645–653. DOI: 10.1016/j.trac.2010.01.007.

    Article  Google Scholar 

  • Luque, M., Luque-Pérez, E., Ríos, A., & Valcárcel, M. (2000). Supported liquid membranes for the determination of vanillin in food samples with amperometric detection. Analytica Chimica Acta, 410, 127–134. DOI: 10.1016/s0003-2670(00)00737-6.

    Article  CAS  Google Scholar 

  • Madaeni, S. S., Jamali, Z., & Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier. Separation and Purification Technology, 81, 116–123. DOI: 10.1016/j.seppur.2011.07.004.

    Article  CAS  Google Scholar 

  • Mendiguchía, C., García-Vargas, M., & Moreno, C. (2008). Screening of dissolved heavy metals (Cu, Zn, Mn, Al, Cd, Ni, Pb) in seawater by a liquid-membrane-ICP-MS approach. Analytical and Bioanalytical Chemistry, 391, 773–778. DOI: 10.1007/s00216-008-1907-1.

    Article  Google Scholar 

  • Minhas, F. T., Memon, S., & Bhanger, M. I. (2010). Transport of Hg(II) through bulk liquid membrane containing calix[4]arene thioalkyl derivative as a carrier. Desalination, 262, 215–220. DOI: 10.1016/j.desal.2010.06.014.

    Article  CAS  Google Scholar 

  • Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C., & Vincieri, F. F. (2001). Polyphenolic content in olive oil waste waters and related olive samples. Journal of Agricultural and Food Chemistry, 49, 3509–3514. DOI: 10.1021/jf000972q.

    Article  CAS  Google Scholar 

  • Nezhadali, A., & Rabani, N. (2011). Competitive bulk liquid membrane transport of Co(II), Ni(II), Zn(II), Cd(II), Ag(I), Cu(II), and Mn(II), cations using 2,2′-dithio(bis)benzothiazole as carrier. Chinese Chemical Letters, 22, 88–92. DOI: 10.1016/j.cclet.2010.06.018.

    Article  CAS  Google Scholar 

  • Norberg, J., Emnéus, J., Jönsson, J. Å., Mathiasson, L., Burestedt, E., Knutsson, M., & Marko-Varga, G. (1997). Online supported liquid membrane-liquid chromatography with a phenol oxidase-based biosensor as a selective detection unit for the determination of phenols in blood plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 701, 39–46. DOI: 10.1016/s0378-4347(97)00348-4.

    Article  CAS  Google Scholar 

  • Reddy, T. R., Ramkumar, J., Chandramouleeswaran, S., & Reddy, A. V. R. (2010). Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier. Journal of Membrane Science, 351, 11–15. DOI: 10.1016/j.memsci.2010.01.021.

    Article  CAS  Google Scholar 

  • Reichardt, C., & Welton, T. (2011). Solvents and solvent effects in organic chemistry (4th ed.). Weinheim, Germany: VCH. DOI: 10.1002/9783527632220.

    Google Scholar 

  • Rydberg, J., Musikas, C., & Choppin, G. R. (1992). Principles and practices of solvent extraction. New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • San Román, M. F., Bringas, E., Ibañez, R., & Ortiz, I. (2010). Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology and Biotechnology, 85, 2–10. DOI: 10.1002/jctb.2252.

    Article  Google Scholar 

  • Shamsipur, M., Davarkhah, R., & Khanchi, A. R. (2010). Facilitated transport of uranium(VI) across a bulk liquid membrane containing thenoyltrifluoroacetone in the presence of crown ethers as synergistic agents. Separation and Purification Technology, 71, 63–69. DOI: 10.1016/j.seppur.2009.11.003.

    Article  CAS  Google Scholar 

  • Singh, R., Mehta, R., & Kumar, V. (2011). Simultaneous removal of copper, nickel and zinc metal ions using bulk liquid membrane system. Desalination, 272, 170–173. DOI: 10.1016/j.desal.2011.01.009.

    Article  CAS  Google Scholar 

  • Zafra, A., Juárez, M. J. B., Blanc, R., Navalón, A., González, J., & Vílchez, J. L. (2006). Determination of polyphenolic compounds in wastewater olive oil by gas chromatography-mass spectrometry. Talanta, 70, 213–218. DOI: 10.1016/j.talanta.2005.12.038.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Ghiasvand.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shadabi, S., Ghiasvand, A.R. & Hashemi, P. Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane. Chem. Pap. 67, 730–736 (2013). https://doi.org/10.2478/s11696-013-0373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0373-1

Keywords

Navigation