Skip to main content
Log in

Catalytic gasification of pyrolytic oil from tire pyrolysis process

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The present work deals with thermo-catalytic decomposition of pyrolytic oil from the scrap tire pyrolysis process. Such oil can be used as a model tar in an experimental study of tar removal from pyrolysis or gasification process gas. Several experiments under different conditions were carried out in order to determine conditions of the gasification and pyrolysis processes. Influence of the oil to steam ratio, temperature, and of the presence of dolomite catalyst was studied. Addition of water steam has positive effect on the hydrogen content in the outgoing process gas as well as on the conversion of the injected oil. The catalytic gasification experiment in a quasi steady state produced process gas with the composition: 61 mole % of H2, 6.4 mole % of CO, and 11.7 mole % of CH4. At temperatures lower than 800°C, the amount of process gas decreased resulting also in a decrease of the oil conversion. A comparison of gasification experiments using fresh calcined dolomite with experiments proceeding with regenerated dolomite was done under the same conditions. There was a decrease in the process gas volumetric flow when regenerated catalyst was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu El-Rub, Z., Bramer, E. A., & Brem, G. (2008). Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel, 87, 2243–2252. DOI: 10.1016/j.fuel.2008.01.004.

    Article  CAS  Google Scholar 

  • Anis, S., & Zainal, Z. A. (2011). Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renewable and Sustainable Energy Reviews, 15, 2355–2377. DOI: 10.1016/j.rser.2011.02.018.

    Article  CAS  Google Scholar 

  • Briens, C., Piskorz, J., & Berruti, F. (2008). Biomass valorization for fuel and chemicals production — A review. International Journal of Chemical Reactor Engineering, 6, 1674. DOI: 10.2202/1542-6580.1674.

    Article  Google Scholar 

  • García, X. A., Alarcón, N. A., & Gordon, A. L. (1999). Steam gasification of tars using a CaO catalyst. Fuel Processing Technology, 58, 83–102. DOI: 10.1016/s0378-3820(98)00087-3.

    Article  Google Scholar 

  • Gilbert, P., Ryu, C., Sharifi, V., & Swithenbank, J. (2009). Tar reduction in pyrolysis vapours from biomass over a hot char bed. Bioresource Technology, 100, 6045–6051. DOI: 10.1016/j.biortech.2009.06.041.

    Article  CAS  Google Scholar 

  • Han, J., & Kim, H. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renewable and Sustainable Energy Reviews, 12, 397–416. DOI: 10.1016/j.rser.2006.07.015.

    Article  CAS  Google Scholar 

  • He, M. Y., Hu, Z. Q., Xiao, B., Li, J. F., Guo, X. J., Luo, S. Y., Yang, F., Feng, Y., Yang, G. J., & Liu, S. M. (2009). Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. International Journal of Hydrogen Energy, 34, 195–203. DOI: 10.1016/j.ijhydene.2008.09.070.

    Article  CAS  Google Scholar 

  • Hosoya, T., Kawamoto, H., & Saka, S. (2008). Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor. Journal of Analytical and Applied Pyrolysis, 83, 71–77. DOI: 10.1016/j.jaap.2008.06.002.

    Article  CAS  Google Scholar 

  • Juma, M., Koreňová, Z., Markoš, J., Jelemenský, Ľ., & Bafrnec, M. (2007). Experimental study of pyrolysis and combustion of scrap tire. Polymers for Advanced Technologies, 18, 144–148. DOI: 10.1002/pat.811.

    Article  CAS  Google Scholar 

  • Lamacz, A., Krztoń, A., Musi, A., & Da Costa, P. (2009). Reforming of model gasification tar compounds. Catalysis Letters, 128, 40–48. DOI: 10.1007/s10562-008-9712-1.

    Article  CAS  Google Scholar 

  • Li, C. S., Hirabayashi, D., & Suzuki, K. (2009). A crucial role of O 2 and O 2−2 on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Applied Catalysis B: Environmental, 88, 351–360. DOI: 10.1016/j.apcatb.2008.11.004.

    Article  CAS  Google Scholar 

  • Li, C. S., & Suzuki, K. (2009). Tar property, analysis, reforming mechanism and model for biomass gasification—An overview. Renewable and Sustainable Energy Reviews, 13, 594–604. DOI: 10.1016/j.rser.2008.01.009.

    Article  CAS  Google Scholar 

  • Li, C. S., Hirabayashi, D., & Suzuki, K. (2010). Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1−x catalyst. Bioresource Technology, 101, S97–S100. DOI: 10.1016/j.biortech.2009.03.043.

    Article  CAS  Google Scholar 

  • Lide, D. R. (Ed.) (1993). Handbook of chemistry and physics (74th ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Milne, T. A., Evans, R. J., & Abatzaglou, N. (1998). Biomass gasifier “tars”: Their nature, formation and conversion. Golden, CO, USA: National Renewable Energy Laboratory.

    Book  Google Scholar 

  • Schmidt, S., Giesa, S., Drochner, A., & Vogel, H. (2011). Catalytic tar removal from bio syngas—Catalyst development and kinetic studies. Catalysis Today, 175, 442–449. DOI: 10.1016/j.cattod.2011.04.052.

    Article  CAS  Google Scholar 

  • Sutton, D., Kelleher, B., & Ross, J. R. H. (2001). Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 73, 155–173. DOI: 10.1016/s0378-3820(01)00208-9.

    Article  CAS  Google Scholar 

  • Swierczynski, D., Courson, C., & Kiennemann, A. (2008). Study of steam reforming of toluene used as model compound of tar produced by biomass gasification. Chemical Engineering and Processing: Process Intensification, 47, 508–513. DOI: 10.1016/j.cep.2007.01.012.

    Article  CAS  Google Scholar 

  • Yoon, S. J., Choi, Y. C., & Lee, J. G. (2010). Hydrogen production from biomass tar by catalytic steam reforming. Energy Conversion and Management, 51, 42–47. DOI: 10.1016/j.enconman.2009.08.017.

    Article  CAS  Google Scholar 

  • Yu, Q. Z., Brage, C., Nordgreen, T., & Sjöström, K. (2009). Effects of Chinese dolomites on tar cracking in gasification of birch. Fuel, 88, 1922–1926. DOI: 10.1016/j.fuel.2009.04.020.

    Article  CAS  Google Scholar 

  • Zhang, R. Q., Brown, R. C., Suby, A., & Cummer, K. (2004). Catalytic destruction of tar in biomass derived producer gas. Energy Conversion and Management, 45, 995–1014. DOI: 10.1016/j.enconman.2003.08.016.

    Article  CAS  Google Scholar 

  • Zhang, Y., Kajitani, S., Ashizawa, M., & Oki, Y. (2009). Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace. Fuel, 89, 302–309. DOI: 10.1016/j.fuel.2009.08.045.

    Article  Google Scholar 

  • Žajdlík, R., Markoš, J., Jelemenský, Ľ., & Remiarová, B. (2000). Single coal char particle combustion in the carbon dioxide atmosphere. Chemical Papers, 54, 467–472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Markoš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gašparovič, L., Šugár, L., Jelemenský, Ľ. et al. Catalytic gasification of pyrolytic oil from tire pyrolysis process. Chem. Pap. 67, 1504–1513 (2013). https://doi.org/10.2478/s11696-013-0371-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0371-3

Keywords

Navigation