Skip to main content

Advertisement

Log in

Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this paper, one-pot synthesis of 2,4,6-triarylpyridine by condensation of subsisted acetophenone (II), aromatic aldehydes (I), and ammonium acetate (III) in the presence of nanocrystalline MgAl2O4 as a new heterogeneous catalyst under solvent-free conditions is reported. Advantages of this method are the use of spatially-hindered aldehydes such as 2-methoxy-, 2-fluoro-, and 2-chlorobenzaldehydes, a new nanocatalyst with high surface area, shorter reaction time, easier workup, higher yield, and its environmental friendliness. The performance of this reaction under solvent free conditions using heterogeneous catalysts like MgAl2O4 could enhance its efficiency from an economic as well as green chemistry point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adib, M., Tahermansouri, H., Koloogani, S. A., Mohammadi, B., & Bijanzadeh, H. R. (2006). Kröhnke pyridines: an efficient solvent-free synthesis of 2,4,6-triarylpyridines. Tetrahedron Letters, 47, 5957–5960. DOI: 10.1016/j.tetlet.2006.01.162.

    Article  CAS  Google Scholar 

  • Banerjee, S., & Sereda, G. (2009). One-step, three-component synthesis of highly substituted pyridines using silica nanoparticle as reusable catalyst. Tetrahedron Letters, 50, 6959–6962. DOI: 10.1016/j.tetlet.2009.09.137.

    Article  CAS  Google Scholar 

  • Barluenga, J., Jiménez-Aquino, A., Fernández, M. A., Aznar, F., & Valdés, C. (2008). Multicomponent and one-pot synthesis of trisubstituted pyridines through a Pd-catalyzed crosscoupling/ cross-coupling/cycloaddition sequence. Tetrahedron, 64, 778–786. DOI: 10.1016/j.tet.2007.10.112.

    Article  CAS  Google Scholar 

  • Chiu, C. F., Tang, Z. L., & Ellingboe, J. W. (1998). Solid-phase synthesis of 2,4,6-trisubstituted pyridines. Journal of Combinatorial Chemistry, 1, 73–77. DOI: 10.1021/cc980005g.

    Article  Google Scholar 

  • Constable, E. C., Housecroft, C. E., Neuburger, M., Phillips, D., Raithby, P. R., Schofield, E., Sparr, E., Tocher, D. A., Zehnder, M., & Zimmermann, Y. (2000). Development of supramolecular structure through alkylation of pendant pyridyl functionality. Journal of Chemical Society, Dalton Transactions, 13, 2219–2228. DOI: 10.1039/b000940g.

    Article  Google Scholar 

  • Davoodnia, A., Bakavoli, M., Moloudi, R., Tavakoli-Hoseini, N., & Khashi, M. (2010). Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst. Monatshefte für Chemie — Chemical Monthly, 141, 867–870. DOI: 10.1007/s00706-010-0329-x.

    Article  CAS  Google Scholar 

  • Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M., & Wang, S. M. (2003). Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorganic & Medicinal Chemistry Letters, 13, 513–517. DOI: 10.1016/s0960-894x(02)00943-5.

    Article  CAS  Google Scholar 

  • Guo, J. J., Lou, H., Zhao, H., Wang, X. G., & Zheng, X. M. (2004). Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Materials Letters, 58, 1920–1923. DOI: 10.1016/j.matlet.2003.12.013.

    Article  CAS  Google Scholar 

  • Heravi, M. M., Bakhtiari, K., Daroogheha, Z., & Bamoharram, F. F. (2007). An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solventfree conditions. Catalysis Communications, 8, 1991–1994. DOI: 10.1016/j.catcom.2007.03.028.

    Article  CAS  Google Scholar 

  • Khosropour, A. R., Mohammadpoor-Baltork, I., & Kiani, F. (2011). Green, new and efficient tandem oxidation and conversion of aryl alcohols to 2,4,6-triarylpyridines promoted by [HMIm]NO3-[BMIm]BF4 as a binary ionic liquid. Comptes Rendus Chimie, 14, 441–445. DOI: 10.1016/j.crci.2010.10.002.

    Article  CAS  Google Scholar 

  • Kim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I., & Yoon, S. S. (2004). Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. European Journal of Medicinal Chemistry, 39, 433–447. DOI: 10.1016/j.ejmech.2004.03.001.

    Article  CAS  Google Scholar 

  • Klimešová, V., Svoboda, M., Waisser, K., Pour, M., & Kaustová, J. (1999). New pyridine derivatives as potential antimicrobial agents. Il Farmaco, 54, 666–672. DOI: 10.1016/s0014-827x(99)00078-6.

    Article  Google Scholar 

  • Maleki, B., Azarifar, D., Veisi, H., Hojati, S. F., Salehabadi, H., & Nejat Yami, R. (2010). Wet 2,4,6-trichloro-1,3,5-triazine (TCT) as an efficient catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Chinese Chemical Letters, 21, 1346–1349. DOI: 10.1016/j.cclet.2010.06.028.

    Article  CAS  Google Scholar 

  • Montazeri, N., & Mahjoob, S. (2012). Highly efficient and easy synthesis of 2,4,6-triarylpyridines catalyzed by pentafluorophenylammonium triflate (PFPAT) as a new recyclable solid acid catalyst in solvent-free conditions. Chinese Chemical Letters, 23, 419–422. DOI: 10.1016/j.cclet.2012.01.035.

    Article  CAS  Google Scholar 

  • Nagarapu, L., Aneesa, Peddiraju, R., & Apuri, S. (2007). HClO4-SiO2 as a novel and recyclable catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Catalysis Communications, 8, 1973–1976. DOI: 10.1016/j.catcom.2007.08.003.

    Article  CAS  Google Scholar 

  • Navaei Alvar, E., Rezaei, M., & Navaei Alvar, H. (2010). Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technology, 198, 275–278. DOI: 10.1016/j.powtec.2009.11.019.

    Article  Google Scholar 

  • Pillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H., & Sudarsanam, V. (2003). Novel drug designing approach for dual inhibitors as anti-inflammatory agents: implication of pyridine template. Biochemical and Biophysical Research Communications, 301, 183–186. DOI: 10.1016/s0006-291x(02)02996-0.

    Article  CAS  Google Scholar 

  • Safari, J., Khalili, S. D., Rezaei, M., Banitaba, S., & Meshkani, F. (2010). Nanocrystalline magnesium oxide: a novel and efficient catalyst for facile synthesis of 2,4,5-trisubstituted imidazole derivatives. Monatshefte für Chemie — Chemical Monthly, 141, 1339–1345. DOI: 10.1007/s00706-010-0397-y.

    Article  CAS  Google Scholar 

  • Safari, J., Banitaba, S. H., & Dehghan Khalili, S. (2011). Cobalt nanoparticles promoted highly efficient one pot fourcomponent synthesis of 1,4-dihydropyridines under solventfree conditions. Chinese Journal of Catalysis, 32, 1850–1855. DOI: 10.1016/s1872-2067(10)60295-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Safari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safari, J., Zarnegar, Z. & Borujeni, M.B. Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Chem. Pap. 67, 688–695 (2013). https://doi.org/10.2478/s11696-013-0361-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0361-5

Keywords

Navigation