Skip to main content

Advertisement

Log in

Sequestration of supercritical CO2 by mercury oxide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

HgCO3·2HgO (mercury oxide carbonate), along with partly unreacted reactants, was obtained by exploring the behaviour of the Hg2Cl2/HgO binary system in supercritical CO2 (scCO2) at 200°C, 22000 kPa in the presence and absence of water, using a self-made laboratory-scale system. The reaction of pure HgO with scCO2 aimed at the synthesis of HgCO3 (mercury carbonate), also yielded the same product. Meanwhile, with a small amount of water present in the Hg2Cl2/HgO-scCO2 system, at 200°C, 22000 kPa, the mineral terlinguaite (Hg4O2Cl2) was obtained instead of mercury oxide carbonate. Repeating this reaction under the same conditions, but in the absence of CO2, again resulted in the synthesis of terlinguaite, leading to the assumption that the scCO2 had no influence on the synthesis of terlinguaite. This study reveals a new moisture-free laboratory method and conditions for the permanent fixation of CO2 by HgO. This method bears two benefits: 1) it can be introduced to reduce the Hg content in flue gas and fly ash emitted from coal-burning power plants and municipal waste incinerators; 2) it can contribute to CO2 mineralisation in montroydite (HgO) geological formations as mercury oxide carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aurivillius, K., & Folkmarson, L. (1968). The crystal structure of terlinguaite Hg4O2Cl2. Acta Chemica Scandinavica, 22, 2529–2540. DOI: 10.3891/acta.chem.scand.22-2529.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., & Reddy, K. J. (2012). Effect of flue gas treatment on the solubility and fractionation of different metals in fly ash of powder river basin coal. Water, Air, and Soil Pollution, 223, 4169–4181. DOI: 10.1007/s11270-012-1182-9.

    Article  CAS  Google Scholar 

  • Bilinski, H., Markovič, M., & Gessner, M. (1980). Solubility and equilibrium constants of mercury(II) in carbonate solutions (25°C, I = 0.5 mol dm−3). Inorganic Chemistry, 19, 3440–3443. DOI: 10.1021/ic50213a045.

    Article  CAS  Google Scholar 

  • Brodersen, K., Göbel, G., & Liehr, G. (1989). Terlinguait Hg4O2Cl2 — ein Mineral mit ungewöhnlichen Hg3-Baueinheiten. Zeitschrift für Anorganische und Allgemeine Chemie, 575, 145–153. DOI: 10.1002/zaac.19895750118. (in German)

    Article  CAS  Google Scholar 

  • Charles, D. (2009). Stimulus gives DOE billions for carboncapture projects. Science, 323, 1158. DOI: 10.1126/science.323.5918.1158.

    Article  CAS  Google Scholar 

  • Dellantonio, A., Walter, J. F., Repmann, F., & Wenzel, W. W. (2010). Disposal of coal combustion residues in terrestrial systems: Contamination and risk management. Journal of Environmental Quality, 39, 761–775. DOI:10.2134/jeq2009.0068.

    Article  CAS  Google Scholar 

  • Doiwa, A., & Tomanek, A. (1964). Die Bildung von Cadmiumcarbonat und Cadmiumsulfit aus Cadmiumoxid. Zeitschrift für Anorganische und Allgemeine Chemie, 334, 12–14. DOI: 10.1002/zaac.19643340103. (in German)

    Article  CAS  Google Scholar 

  • Ehrhardt, H., Seidel, H., & Schweer, H. (1980). Hochdrucksynthesen einiger Carbonate mit überkritischem CO2. Zeitschrift für Anorganische und Allgemeine Chemie, 462, 185–198. DOI: 10.1002/zaac.19804620121. (in German)

    Article  CAS  Google Scholar 

  • Frost, R. L., Čejka, J., Ayoko, G. A., & Dickfos, M. J. (2008a). Raman spectroscopic study of the uranyl carbonate mineral voglite. Journal of Raman Spectroscopy, 39, 374–379. DOI:10.1002/jrs.1829.

    Article  CAS  Google Scholar 

  • Frost, R. L., Martens, W. N., Wain, D. L., & Hales, M. C. (2008b). Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70, 1120–1126. DOI:10.1016/j.saa.2007.10.027.

    Article  Google Scholar 

  • Goff, F., Guthrie, G., Counce, D., Kluk, E., Bergfeld, D., & Snow, M. (1997). Preliminary investigations on the carbon dioxide sequestering potential of ultramafic rocks. Report LA-13328-MS. Los Alamos, New Mexico, USA: Los Alamos National Laboratory.

    Book  Google Scholar 

  • Hillebrand, W. F., & Schaller, W. T. (1909). The mercury minerals from Terlingua, Texas. U.S. Geological Survey Bulletin 405 (pp. 28). Washington, DC, USA: U.S. Governmental Printing Office.

    Google Scholar 

  • Kröcher, O., Köppel, R. A., & Baiker, A. (1996). Sol-gel derived hybrid materials as heterogeneous catalysis for the synthesis of N,N-dimethylformaminde from supercritical carbon dioxide. Chemical Communications, 1996, 1497–1498. DOI: 10.1039/cc9960001497.

    Article  Google Scholar 

  • Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., Jr., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153–1170. DOI: 10.1016/0360-5442(95)00071-n.

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, R., Li, H., Han, B., Liu, Z., Jiang, T., He, J., Zhang, X., & Yang, G. (2002). How does magnetic field affect polymerisation in supercrtitical fluids? Study of radical polymerization in supercritical CO2. New Journal of Chemistry, 26, 958–961. DOI: 10.1039/b201279k.

    Article  CAS  Google Scholar 

  • López Alonso, M., Benedito, J. L., Miranda, M., Fernández, J. A., Castillo, C., Hernández, J., & Shore, R. F. (2003). Largescale spatial variation in mercury concentrations in cattle in NW Spain. Environmental Pollution, 125, 173–181. DOI: 10.1016/s0269-7491(03)00073-3.

    Article  Google Scholar 

  • Lozano, P., De Diego, T., Carrié, D., Vaultier, M., & Iborra, J. L. (2004). Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide. Journal of Molecular Catalysis A: Chemical, 214, 113–119. DOI:10.1016/j.molcata.2003.09.034.

    Article  CAS  Google Scholar 

  • O’Connor, W. K., Dahlin, D. C., Walters, R. P., & Turner, P. C. (1999). Carbon dioxide sequestration by ex-situ mineral carbonation. In Proceedings of the Second AMUI Dixy Lee Ray Symposium, August 29–September 2, 1999. Washington, DC, USA: American Society of Mechanical Engineers.

    Google Scholar 

  • O’Connor, W. K., Dahlin, D. C., Nilsen, D. N., & Walters, R. P. (2000). Carbon dioxide sequestration by direct mineral carbonation with carbonic acid. In Proceedings of the 25th International Technical Conference on Coal Utilization and Fuel System, March 6–9, 2000. Clearwater, FL, USA: Coal Technology Association.

    Google Scholar 

  • Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–72. DOI: 10.1126/science.1100103.

    Article  CAS  Google Scholar 

  • Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjöberg, S., & Wanner, H. (2005). Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+-Cl, OH, CO 2−3 , SO 2−4 , and PO 3−4 aqueous systems (IUPAC Technical Report). Pure and Applied Chemistry, 77, 739–800. DOI: 10.1351/pac200577040739.

    Article  CAS  Google Scholar 

  • Pervukhina, N. V., Romanenko, G. V., Borisov, S. V., Magarill, S. A., & Palchik, N. A. (1999). Crystal chemistry of mercury(I) and mercury(I, II) minerals. Journal of Structural Chemistry, 40, 461–476. DOI: 10.1007/bf02700646.

    Article  CAS  Google Scholar 

  • Rabenau, A. (1985). Die Rolle der Hydrothermalsynthese in der prärativen Chemie. Angewandte Chemie, 97, 1017–1032. DOI: 10.1002/ange.19850971205. (in German)

    Article  CAS  Google Scholar 

  • Reddy, K. J., Lindsay, W. L., Boyle, F. W., Jr., & Redente, E. F. (1986). Solubility relationships and mineral transformations associated with recarbonation of retorted shales. Journal of Environmental Quality, 15, 129–133. DOI: 10.2134/jeq1986.00472425001500020008x.

    Article  CAS  Google Scholar 

  • Reddy, K. J., Drever, J. I., & Hasfurther, V. R. (1991). Effects of a CO2 pressure process on the solubilities of major and trace elements in oil shale solid wastes. Environmental Science and Technology, 25, 1466–1469. DOI: 10.1021/es00020a016.

    Article  CAS  Google Scholar 

  • Shlyapnikov, D. S., & Stern, E. K. (1979). Solubility of cadmium and mercury oxides in sodium chloride solutions at elevated carbon dioxide pressures. Doklady Akademii Nauk SSSR, 249, 457–466.

    CAS  Google Scholar 

  • Siddique, R. (2010). Utilization of coal combustion by-products in sustainable construction materials. Resources, Conservation and Recycling, 54, 1060–1066. DOI: 10.1016/j.resconrec.2010.06.011.

    Article  Google Scholar 

  • Sushil, S., & Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676–2679. DOI:10.1016/j.fuel.2006.04.031.

    Article  CAS  Google Scholar 

  • Turgut, P. (2012). Manufacturing of building bricks without Portland cement. Journal of Cleaner Production, 37, 361–367. DOI:10.1016/j.jclepro.2012.07.047.

    Article  CAS  Google Scholar 

  • Twardowska, I., & Szczepanska, J. (2002). Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study. The Science of the Total Environment, 285, 29–51. DOI: 10.1016/s0048-9697(01)00893-2.

    Article  CAS  Google Scholar 

  • van Velzen, D., Langenkamp, H., & Herb, G. (2002). Review: Mercury in waste incineration. Waste Management and Research, 20, 556–568. DOI: 10.1177/0734242x0202000610.

    Article  Google Scholar 

  • Vicente, A. B., Jordán, M. M., Sanfeliu, T., Sánchez, A., & Esteban, M. D. (2012). Air pollution prediction models of particles, As, Cd, Ni and Pb in a highly industrialized area in Castellón (NE, Spain). Environmental Earth Sciences, 66, 879–88 DOI: 10.1007/s12665-011-1298-z.

    Article  CAS  Google Scholar 

  • Webb, P. B., & Cole-Hamilton, D. J. (2004). Continuous flow homogeneous catalysis using supercritical fluids. Chemical Communications, 2004, 612–613. DOI: 10.1039/b316311c.

    Article  Google Scholar 

  • Wilke, F. D. H., Vásquez, M., Wiersberg, T., Naumann, R., & Erzinger, J. (2012). On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach. Applied Geochemistry, 27, 1615–1622. DOI:10.1016/j.apgeochem.2012.04.012.

    Article  CAS  Google Scholar 

  • Xhaxhiu, K. (2005). The use of supercritical carbon dioxide in solid state chemistry and basic structural investigations with chalcogenide halides of the third main group. Ph.D. thesis, University of Siegen, Siegen, Germany.

    Google Scholar 

  • Xhaxhiu, K., Como, A., & Kota, T. (2012a). Syntheses of inorganic species in supercritical CO2. How feasible are they? Journal of Environmental Protection and Ecology, 13, 144–154.

    CAS  Google Scholar 

  • Xhaxhiu, K., Mele, A., Memo, A., Seiti, B., Kota, T., & Dule, K. (2012b). Syntheses of rubidium- and cesium triiodides in supercritical carbon dioxide. Asian Journal of Chemistry, 24, 3879–3883.

    CAS  Google Scholar 

  • Yanagihara, N., Vemulapalli, K., & Fernando, Q. (1991a). Synthesis of lanthanide carbonates using supercritical carbon dioxide. Kidorui, 18, 136–137.

    CAS  Google Scholar 

  • Yanagihara, N., Vemulapalli, K., Fernando, Q., & Dyke, J. T. (1991b). Synthesis of lanthanide carbonates. Journal of the Less-Common Metals, 167, 223–232. DOI: 10.1016/0022-5088(91)90277-b.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kledi Xhaxhiu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xhaxhiu, K., Saraçi, E. & Bente, K. Sequestration of supercritical CO2 by mercury oxide. Chem. Pap. 67, 594–600 (2013). https://doi.org/10.2478/s11696-013-0356-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0356-2

Keywords

Navigation