Skip to main content
Log in

Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase is a subject of great interest. Flexibility of these residues has been suspected to be a key player in controlling the ligand traversal in the gorge. This raises the question of whether the over-representation of aromatic residues in the gorge implies higher-than-normal flexibility of these residues. The current study suggests that it does not. Large changes in the hydrophobic cross-sectional area due to dihedral oscillations are probably the reason of their presence in the gorge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birks, J., & Harvey, R. J. (2006). Donepezil for dementia due to Alzheimer’s disease. Cochrane Database of Systematic Reviews, 1, CD001190. DOI:10.1002/14651858.cd001190.pub2.

    Google Scholar 

  • Davis, I.W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L.W., Arendall, W. B., Snoeyink, J., Richardson, J. S., & Richardson, D. C. (2007). MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Research, 35, W375–W383. DOI: 10.1093/nar/gkm216.

    Article  Google Scholar 

  • Dvir, H., Jiang, H. L., Wong, D. M., Harel, M., Chetrit, M., He, X. C., Jin, G. Y., Yu, G. L., Tang, X. C., Silman, I., Bai, D. L., & Sussman, J. L. (2002). X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (−)-huperzine B: structural evidence for an active site rearrangement. Biochemistry, 41, 10810–10818. DOI:10.1021/bi020151.

    Article  CAS  Google Scholar 

  • Geula, C., & Mesulam, M. M. (1995). Cholinesterases and the pathology of Alzheimer disease. Alzheimer Disease & Associated Disorders, 9, 23–28. DOI: 10.1097/00002093-199501002-00005.

    Article  Google Scholar 

  • Gilson, M. K., Straatsma, T. P., McCammon, J. A., Ripoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I., & Sussman, J. L. (1994). Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science, 263, 1276–1278 DOI: 10.1126/science.8122110.

    Article  CAS  Google Scholar 

  • Harel, M., Sonoda, L. K., Silman, I., Sussman, J. L., & Rosenberry, T. L. (2008). Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetyl-cholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site. Journal of the American Chemical Society, 130, 7856–7861. DOI: 10.1021/ja7109822.

    Article  CAS  Google Scholar 

  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling, 14, 33–38. DOI: 10.1016/0263-7855(96)00018-5.

    Article  CAS  Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926–935. DOI: 10.1063/1.445869.

    Article  CAS  Google Scholar 

  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9, 646–652. DOI: 10.1038/nsb0902-646.

    Article  CAS  Google Scholar 

  • Kryger, G., Silman, I., & Sussman, J. L. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept (R)): implications for the design of new anti-Alzheimer drugs. Structure with Folding & Design, 7, 297–307. DOI: 10.1016/s0969-2126(99)80040-9.

    CAS  Google Scholar 

  • Luzar, A., & Chandler, D. (1996). Hydrogen-bond kinetics in liquid water. Nature, 379, 55–57. DOI: 10.1038/37905 5a0.

    Article  CAS  Google Scholar 

  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., & Karplus, M. (1998). Allatom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102, 3586–3616. DOI: 10.1021/jp973084f.

    Article  CAS  Google Scholar 

  • Mackerell, A. D., Feig, M., & Brooks, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25, 1400–1415. DOI:10.1002/jcc.20065.

    Article  CAS  Google Scholar 

  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802. DOI:10.1002/jcc.20289.

    Article  CAS  Google Scholar 

  • Quinn, D. M. (1987). Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews, 87, 955–979. DOI: 10.1021/cr00081a005.

    Article  CAS  Google Scholar 

  • Shen, T. Y., Tai, K. H., Henchman, R. H., & McCammon, J. A. (2002). Molecular dynamics of acetylcholinesterase. Accounts of Chemical Research, 35, 332–340. DOI: 10.1021/ar010025i.

    Article  CAS  Google Scholar 

  • Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 253, 872–879. DOI: 10.1126/science.1678899.

    Article  CAS  Google Scholar 

  • Tarek, M., & Tobias, D. J. (2002). Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Physical Review Letters, 88, 138101. DOI: 10.1103/physrevlett.88.138101.

    Article  CAS  Google Scholar 

  • Wlodek, S. T., Clark, T. W., Scott, L. R., & McCammon, J. A. (1997). Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. Journal of the American Chemical Society, 119, 9513–9522. DOI: 10.1021/ja971226d.

    Article  CAS  Google Scholar 

  • Wüthrich, K., & Wagner, G. (1978). Internal motion in globular proteins. Trends in Biochemical Sciences, 3, 227–230. DOI: 10.1016/s0968-0004(78)94607-8.

    Article  Google Scholar 

  • Xu, Y. C., Colletier, J. P., Weik, M., Jiang, H. L., Moult, J., Silman, I., & Sussman, J. L. (2008). Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophysical Journal, 95, 2500–2511. DOI: 10.1529/biophysj.108.129601.

    Article  CAS  Google Scholar 

  • Zhou, H. X., Wlodek, S. T., & McCammon, J. A. (1998). Conformation gating as a mechanism for enzyme specificity. Proceedings of the National Academy of Sciences of the United States of America, 95, 9280–9283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan K. GhattyVenkataKrishna.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

GhattyVenkataKrishna, P.K., Chavali, N. & Uberbacher, E.C. Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase. Chem. Pap. 67, 677–681 (2013). https://doi.org/10.2478/s11696-013-0354-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0354-4

Keywords

Navigation