Skip to main content

Advertisement

Log in

Assessment of the fate of some household micropollutants in urban wastewater treatment plant

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Everyday domestic activity is a significant source of water pollution. The presence of six household micropollutants in an urban wastewater treatment plant (WWTP) was assessed in wastewater and sludge. A multi-target analytical method was developed for the quantification of ibuprofen, erythromycin, ofloxacin, 4-nonylphenol, 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan), and sucralose. The micropollutants were extracted from the liquid and solid phases and their concentrations were determined by LC-MS/MS. The efficiency of micropollutants’ removal within a conventional activated sludge process was assessed. From 50 % to 90 % of ibuprofen and erythromycin was removed from the wastewater liquid phase. Their removal can be attributed to biological degradation as they were not found adsorbed on the outlet sludge. Ofloxacin and triclosan were removed from the liquid phase with similar efficiencies; however, they were adsorbed on the sludge, so it was not possible to determine their removal mechanism (whether biodegradation or displacement to solid phase/sequestration). Sucralose was not removed from wastewater (3 μg L−1 in inlet and outlet liquid phase) and not adsorbed on the sludge. 4-Nonylphenol concentrations were sometimes higher in the WWTP outlet water; this may relate to the degradation of alkylphenol ethoxylates in the wastewater treatment process. 4-Nonylphenol was always present in the outlet sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch, G., & Metcalfe, C. (2006). Developmental effects in Japanese medaka (Oryzias latipes) exposed to nonylphenol ethoxylates and their degradation products. Chemosphere, 62, 1214–1223. DOI: 10.1016/j.chemosphere.2005.02.100.

    Article  CAS  Google Scholar 

  • Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265. DOI: 10.1016/j.copbio.2008.05.006.

    Article  CAS  Google Scholar 

  • Barbosa, J., Bergés, R., Toro, I., & Sanz-Nebot, V. (1997). Protonation equilibria of quinolone antibacterials in acetonitrilewater mobile phases used in LC. Talanta, 44, 1271–1283. DOI: 10.1016/s0039-9140(96)02188-1.

    Article  CAS  Google Scholar 

  • Bhandari, A., Surampalli, R. Y., Adams, C. D., Champagne, P., Ong, S. K., Tyagi, R. D., & Zhang, T. C (2009). Contaminants of emerging environmental concern. Reston, VA, USA: American Society of Civil Engineers.

    Google Scholar 

  • Brorström-Lundén, E., Svenson, A., Viktor, T., Woldegiorgis, A., Remberger, M., & Kaj, L. (2008). Measurement of surcalose in the Swedish screening program 2007. Stockholm, Sweden: Swedish Environmental Research Institute.

    Google Scholar 

  • Brown, J. N., Paxéus, N., Förlin, L., & Larsson, D. G. J. (2007). Variations in bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. Environmental Toxicology and Pharmacology, 24, 267–274. DOI: 10.1016/j.etap.2007.06.005.

    Article  CAS  Google Scholar 

  • Cha, J. M., Yang, S., & Carlson, K. H. (2006). Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. Journal of Chromatography A, 1115, 46–57. DOI: 10.1016/j.chroma.2006.02.086.

    Article  CAS  Google Scholar 

  • Clarke, B. O., & Smith, S. R. (2011). Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International, 37, 226–247. DOI: 10.1016/j.envint.2010.06.004.

    Article  CAS  Google Scholar 

  • DiFrancesco, A. M., Chiu, P. C., Standley, L. J., Allen, H. E., & Salvito, D. T. (2004). Dissipation of fragrance materials in sludge-amended soils. Environmental Science & Technology, 38, 194–201. DOI: 10.1021/es034618v.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (1993). Method 410.4. The determination of chemical oxygen demand by semi-automated colorimetry. EPA-600/4-79-020. Cinncinaty, OH, USA.

    Google Scholar 

  • Environmental Protection Agency (2007). Method 1694. Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. EPA-821-R-08-002. Cinncinaty, OH, USA.

    Google Scholar 

  • Environmental Protection Agency (2008). Reregistration eligibility decision for triclosan. EPA 739-RO-8009. Cinncinaty, OH, USA.

    Google Scholar 

  • EU Parliament (2008). Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing. Official Journal of the European Union, L 348, 84–97.

    Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159. DOI: 10.1016/j.aquatox.2005.09.009.

    Article  CAS  Google Scholar 

  • Göbel, A., Thomsen, A., McArdell, C. S., Joss, A., & Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 39, 3981–3989. DOI: 10.1021/es048550a.

    Article  Google Scholar 

  • Grice, H. C., & Goldsmith, L. A. (2000). Sucralose-an overview of the toxicity data. Food and Chemical Toxicology, 38 (Supplement 2), S1–S6. DOI: 10.1016/s0278-6915(00)00023-5.

    Article  CAS  Google Scholar 

  • Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y., & Arizono, K. (2004). Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicology, 67, 167–179. DOI: 10.1016/j.aquatox.2003.12.005.

    Article  CAS  Google Scholar 

  • Jahnke, A., Gandrass, J., & Ruck, W. (2004). Simultaneous determination of alkylphenol ethoxylates and their biotransformation products by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1035, 115–122. DOI: 10.1016/j.chroma.2004.02.060.

    Article  CAS  Google Scholar 

  • Jenner, M. R., & Smithson, A. (1989). Physicochemical properties of the sweetener sucralose. Journal of Food Science, 54, 1646–1649. DOI: 10.1111/j.1365-2621.1989.tb05179.x.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources — A review. Chemosphere, 45, 957–969. DOI: 10.1016/s0045-6535(01)00144-8.

    Article  Google Scholar 

  • Le ministre d’Etat, ministre de l’écologie (2007). Arręté du 22 juin 2007 relatif à la collecte, au transport et au traitement des eaux usées des agglomérations d’assainissement ainsi qu’à la surveillance de leur fonctionnement et de leur efficacité, et aux dispositifs d’assainissement non collectifs recevant une chrage brute de pollution organique supérieure à 1,2 kg/j de DBO5. NOR: DEVO0754085A. Paris, France. (in French)

    Google Scholar 

  • Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science & Technology, 44, 3468–3473. DOI: 10.1021/es903490h.

    Article  CAS  Google Scholar 

  • Lillenberg, M., Yurchenko, S., Kipper, K., Herodes, K., Pihl, V., Sepp, K., Löhmus, R., & Nei, L. (2009). Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. Journal of Chromatography A, 1216, 5949–5954. DOI: 10.1016/j.chroma.2009.06.029.

    Article  CAS  Google Scholar 

  • Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M., & Andersson, B. A. V. (2006). Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environmental Science & Technology, 40, 1042–1048. DOI: 10.1021/es0516211.

    Article  CAS  Google Scholar 

  • Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Müller, M. D., & Buser, H. R. (2002). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environmental Science & Technology, 36, 2322–2329. DOI: 10.1021/es0114254.

    Article  Google Scholar 

  • Liu, F., Ying, G. G., Yang, L. H., & Zhou, Q. X. (2009). Terrestrial ecotoxicological effects of the antimicrobial agent triclosan. Ecotoxicology and Environmental Safety, 72, 86–92. DOI: 10.1016/j.ecoenv.2008.06.009.

    Article  CAS  Google Scholar 

  • Loos, R., Hanke, G., Umlauf, G., & Eisenreich, S. J. (2007). LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 66, 690–699. DOI: 10.1016/j.chemosphere.2006.07.060.

    Article  CAS  Google Scholar 

  • Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110, 375–391. DOI: 10.1016/s0269-7491(00)00162-7.

    Article  CAS  Google Scholar 

  • McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H., Jefson, M. R., Kamicker, B. J., Lipinski, C. A., Lundy, K. M., Reese, C. P., & Vu, C. B. (1997). Quantitative structure-activity relationships among macrolide antibacterial agents: In vitro and in vivo potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40, 1340–1346. DOI: 10.1021/jm960436i.

    Article  CAS  Google Scholar 

  • Meesters, R. J. W., & Schröder, H. F. (2002). Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Analytical Chemistry, 74, 3566–3574. DOI: 10.1021/ac011258q.

    Article  CAS  Google Scholar 

  • Picó, Y., & Andreu, V. (2007). Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 387, 1287–1299. DOI: 10.1007/s00216-006-0843-1.

    Article  Google Scholar 

  • Qiang, Z., & Adams, C. (2004). Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research, 38, 2874–2890. DOI: 10.1016/j.watres.2004.03.017.

    Article  CAS  Google Scholar 

  • Radjenović, J., Petrović, M., & Barceló, D. (2009a). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43, 831–841. DOI: 10.1016/j.watres.2008.11.043.

    Article  Google Scholar 

  • Radjenović, J., Jelić, A., Petrović, M., & Barceló, D. (2009b). Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analytical and Bioanalytical Chemistry, 393, 1685–1695. DOI: 10.1007/s00216-009-2604-4.

    Article  Google Scholar 

  • Richardson, S. D. (2010). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 82, 4742–4774. DOI: 10.1021/ac101102d.

    Article  CAS  Google Scholar 

  • Ruel, S. M., Choubert, J. M., Esperanza, M., Miège, C., Madrigal, P. N., Budzinski, H., Le Ménach, K., Lazarova, M., & Coquery, M. (2011). On-site evaluation of the removal of 100 micro-pollutants through advanced wastewater treatment processes for reuse applications. Water Science and Technology, 63, 2486–2497. DOI: 10.2166/wst.2011.470.

    Article  Google Scholar 

  • Scheurer, M., Brauch, H. J., & Lange, F. T. (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Analytical and Bioanalytical Chemistry, 394, 1585–1594. DOI: 10.1007/s00216-009-2881-y.

    Article  CAS  Google Scholar 

  • Singer, H., Müller, S., Tixier, C., & Pillonel, L. (2002). Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental Science & Technology, 36, 4998–5004. DOI: 10.1021/es025750i.

    Article  CAS  Google Scholar 

  • Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34, 1033–1049. DOI: 10.1016/j.envint.2008.01.004.

    Article  CAS  Google Scholar 

  • Stephenson, B. C., Rangel-Yagui, C. O., Pessoa, A., Jr., Tavares, L. C., Beers, K., & Blankschtein, D. (2006). Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Langmuir, 22, 1514–1525. DOI: 10.1021/la052530k.

    Article  CAS  Google Scholar 

  • Stuer-Lauridsen, F., Birkved, M., Hansen, L. P., Holten Lützhøft, H. C., & Halling-Sørensen, B. (2000). Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere, 40, 783–793. DOI: 10.1016/s0045-6535(99)00453-1.

    Article  CAS  Google Scholar 

  • Suarez, S., Lema, J. M., & Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, 3214–3224. DOI: 10.1016/j.watres.2010.02.040.

    Article  CAS  Google Scholar 

  • Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science & Technology, 35, 3397–3406. DOI: 10.1021/es0003021.

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt, R., Marquez-Rocha, F., Ponce, E., Licea, A. F., & Viana, M. T. (2005). Nonylphenol, an integrated vision of a pollutant. Applied Ecology and Environmental Research, 4, 1–25.

    Google Scholar 

  • Vega Morales, T., Torres Padrón, M. E., Sosa Ferrera, Z., & Santana Rodríguez, J. J. (2009). Determination of alkylphenol ethoxylates and their degradation products in liquid and solid samples. Tr-Ac Trends in Analytical Chemistry, 28, 1186–1200. DOI: 10.1016/j.trac.2009.07.011.

    Article  CAS  Google Scholar 

  • Völgyi, G., Ruiz, R., Box, K., Comer, J., Bosch, E., & Takács-Novák, K. (2007). Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: Validation study in a new cosolvent system. Analytica Chimica Acta, 583, 418–428. DOI: 10.1016/j.aca.2006.10.015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Pasquini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquini, L., Munoz, JF., Rimlinger, N. et al. Assessment of the fate of some household micropollutants in urban wastewater treatment plant. Chem. Pap. 67, 601–612 (2013). https://doi.org/10.2478/s11696-013-0339-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0339-3

Keywords

Navigation