Skip to main content
Log in

Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Oxidative stress plays a key role in the pathophysiology of many diseases. Hydroxyl radical is the oxidative species most commonly causing damage to cells. The aim of this work was to optimize the method for antioxidant activity determination on a model lipophilic geranylated flavanone, diplacone. This method uses protection of plasmid DNA from oxidation by a hydroxyl radical generated by the Fenton reaction involving oxidation of metal ions using H2O2 and ascorbate. The method was optimized for lipophilic compounds using several solvents and co-solvents. It was found that (2-hydroxypropyl)-β-cyclodextrin (0.1 mass % aq. sol.) is the best co-solvent for our model lipophilic compound to measure the antioxidant activity by the method presented. Other solvents, namely dimethyl sulfoxide, Cremophor EL® (0.1 mass % aq. sol.), ethanol, and methanol, were not suitable for the determination of the antioxidant activity by the method described. Tween 80 (0.1 mass % aq. sol.) and a mixture of 10 vol. % ethanol and 9 mass % bovine serum albumin (aq. sol.) significantly decreased the antioxidant activity of the model lipophilic compound and thus were not suitable for this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bektaşoğlu, B., Çelik, S. E., Özyürek, M., Güçlü, K., & Apak, R. (2006). Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochemical and Biophysical Research Communication, 345, 1194–1200. DOI:10.1016/j.bbrc.2006.05.038.

    Article  Google Scholar 

  • Calabrò, M. L., Tommasini, S., Donato, P., Raneri, D., Stancanelli, R., Ficarra, P., Ficarra, R., Costa, C., Catania, S., Rustichelli, C., & Gamberini, G. (2004). Effects of α- and β- cyclodextrin complexation on physico-chemical properties and antioxidant activity of some 3-hydroxyflavones. Journal of Pharmaceutical and Biomedical Analysis, 35, 365–377. DOI:10.1016/j.jpba.2003.12.005.

    Article  Google Scholar 

  • Chiou, S. H. (1983). DNA- and protein-scission activities of ascorbate in presence of copper ion and a copper-peptide complex. Journal of Biochemistry, 94, 1259–1267.

    CAS  Google Scholar 

  • Chiou, S. H. (1984). DNA-scission activities of ascorbate in presence of metal chelates. Journal of Biochemistry, 96, 1307–1310.

    CAS  Google Scholar 

  • Cooke, M. S., Olinski, R., & Evans, M. D. (2006). Does measurement of oxidative damage to DNA have clinical significance? Clinica Chimica Acta, 365, 30–49. DOI:10.1016/j.cca.2005.09.009.

    Article  CAS  Google Scholar 

  • Fukuzawa, K., Saitoh, Y., Akai, K., Kogure, K., Ueno, S., Tokumura, A., Otagiri, M., & Shibata, A. (2005). Antioxidant effect of bovine serum albumin on membrane lipid peroxidation induced by iron chelate and superoxide. Biochimica et Biophysica Acta, Biomembranes, 1668, 145–155. DOI:10.1016/j.bbamem.2004.12.006.

    Article  CAS  Google Scholar 

  • Gelderblom, H., Verweij, J., Nooter, A., & Sparreboom, A. (2001). Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 37, 1590–1598. DOI: 10.1016/s0959-8049(01)00171-x.

    Article  CAS  Google Scholar 

  • Gould, S., & Scott, R. C. (2005). 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food and Chemical Toxicology, 43, 1451–1459. DOI:10.1016/j.fct.2005.03.007.

    Article  CAS  Google Scholar 

  • Gutiérrez, M. B., San Miguel, B., Villares, C., González Gallego, J., & Tuñón, M. J. (2006). Oxidative stress induced by Cremophor EL in not accompanied by changes in NK-κB activation of iNOS expression. Toxicology, 222, 125–131. DOI:10.1016/j.tox.2006.02.002.

    Article  Google Scholar 

  • Iwase, K., Oyama, Y., Tatsuishi, T., Yamaguchi, J. Y., Nishimimura, Y., Kanada, A., Kobayashi, M., Maemura, Y., Ishida, S., & Okano, Y. (2004). Cremophor EL augments the cytotoxicity of hydrogen peroxide in lymphocytes dissociated from rat thymus glands. Toxicology Letters, 154, 143–148. DOI:10.1016/j.toxlet.2004.08.003.

    Article  CAS  Google Scholar 

  • Jiang, T. F., Du, X., & Shi, Y. P. (2004). Determination of flavonoids from Paulownia tomentosa (Thunb) steud by micellar electrokinetic capillary electrophoresis. Chromatographia, 59, 255–258. DOI: 10.1365/s10337-003-0154-z.

    CAS  Google Scholar 

  • Kishioshka, T., Iida, C., Fujii, K., Nagae, R., Onishi, Y., Ichi, I., & Kojo, S. (2007). Effect of dimethyl sulphoxide on oxidative stress, activation of mitogen activated protein kinase and necrosis caused by thioacetamide in the rat liver. European Journal of Pharmacology, 564, 190–195. DOI:10.1016/j.ejphar.2007.03.001.

    Article  Google Scholar 

  • Koch, O. R., Pani, G., Borrello, S., Colavitti, R., Cravero, A., Farrò, S., & Galeotti, T. (2004). Oxidative stress and antioxidant defences in ethanol-induced cell injury. Molecular Aspects of Medicine, 25, 191–198. DOI:10.1016/j.mam.2004.02.019.

    Article  CAS  Google Scholar 

  • Loureiro, S. O., Heimfarth, L., Reis, K., Wild, L., Andrade, C., Guma, F. T. C. R., Gonçalves, C. A., & Pessoa-Pureur, R. (2011). Acute ethanol exposure disrupts actin cytoskeleton and generates reactive oxygen species in c6 cells. Toxicology in Vitro, 25, 28–36. DOI:10.1016/j.tiv.2010.09.003.

    Article  CAS  Google Scholar 

  • Lu, Z., Cheng, B., Hu, Y., Zhang, Y. H., & Zou, G. L. (2009). Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry, 113, 17–20. DOI:10.1016/j.foodchem.2008.04.042.

    Article  CAS  Google Scholar 

  • Ma, Q. (2010). Transcriptional responses to oxidative stress: Pathological and toxicological implications. Pharmacology & Therapeutics, 125, 376–393. DOI: 10.1016/j.pharmthera.2009.11.004.

    Article  CAS  Google Scholar 

  • National Toxicology Program (1992). NTP Toxicology and carcinogenesis studies of polysorbate 80 (CAS No. 9005-65-6) in F344/N rats and B6C3F1 mice (Feed studies). National Toxicological Program, Technical Report Series, 415, 1–225.

    Google Scholar 

  • Parthasarathy, J. S., Kumar, R. S., Manikandan, S., Narayanan, G. S., Kumar, R. V., & Devi, R. S. (2006). Effect of methanolinduced oxidative stress on the neuroimmune system of experimental rats. Chemico-Biological Interactions, 161, 14–25. DOI:10.1016/j.cbi.2006.02.005.

    Article  CAS  Google Scholar 

  • Que, B. G., Downey, K. M., & So, A. G. (1980). Degradation of deoxyribonucleic acid by 1,10-phenanthroline-copper complex: the role of hydroxyl radicals. Biochemistry, 19, 5987–5991. DOI: 10.1021/bi00567a007.

    Article  CAS  Google Scholar 

  • Roche, M., Rondeau, P., Singh, N. R., Tarnus, E., & Bourdon, E. (2008). The antioxidant properties of serum albumin. FEBS Letters, 582, 1783–1787. DOI: 10.1016/j.febslet.2008.04.057.

    Article  CAS  Google Scholar 

  • Sagripanti, J. L., & Kraemer, K. H. (1989). Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. Journal of Biological Chemistry, 264, 1729–1734.

    CAS  Google Scholar 

  • Santos, N. C., Figueira-Coelho, J., Martins-Silva, J., & Saldanha, C. (2003). Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochemical Pharmacology, 65, 1035–1041. DOI: 10.1016/s0006-2952(03)00002-9.

    Article  CAS  Google Scholar 

  • Šmejkal, K., Grycová, L., Marek, R., Lemière, F., Jankovská, D., Forejtníková, H., Vančo, J., & Suchý, V. (2007). C-Geranyl compounds from Paulownia tomentosa fruits. Journal of Natural Products, 70, 1244–1248. DOI: 10.1021/np070063w.

    Article  Google Scholar 

  • Tatsuishi, T., Oyama, Y., Iwase, K., Yamaguchi, J. Y., Kobayashi, M., Nishimura, Y., Kanada, A., & Hirama, S. (2005). Polysorbate 80 increases the susceptibility to oxidative stress in rat thymocytes. Toxicology, 207, 7–14. DOI:10.1016/j.tox.2004.07.020.

    Article  CAS  Google Scholar 

  • Zima, A., Hošek, J., Treml, J., Muselík, J., Suchý, P., Pražanová, G., Lopes, A., & Žemlička, M. (2010). Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa fruit. Molecules, 15, 6035–6049. DOI: 10.3390/molecules15096035.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Treml.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treml, J., Šmejkal, K., Hošek, J. et al. Determination of antioxidant activity using oxidative damage to plasmid DNA — pursuit of solvent optimization. Chem. Pap. 67, 484–489 (2013). https://doi.org/10.2478/s11696-013-0334-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0334-8

Keywords

Navigation