Skip to main content
Log in

Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Changes in the various chemical and structural properties of polyaniline (PANI) films effected by interaction with Fenton’s reagent are monitored with electrochemical in situ spectroscopic and surface-sensitive techniques. Starting from a model of possible structural changes caused by chemical attack of species generated by Fenton’s reagent, particular attention is paid to the differences between the compact and highly porous (open) forms of PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-Elwahed, A., & Holze, R. (2003). Anion effects with polyaniline in aqueous solutions. Current Trends in Polymer Science, 8, 211–222.

    CAS  Google Scholar 

  • Arjomandi, J., & Holze, R. (2007). In situ characterisation of N-methylpyrrole and (N-methylpyrrole-cyclodextrin) polymers on gold electrodes in aqueous and nonaqueous solution. Synthetic Metals, 157, 1021–1028. DOI: 10.1016/j.synthmet.2007.10.009.

    Article  CAS  Google Scholar 

  • Arjomandi, J., Shah, A. A., Bilal, S., Hoang, H. V., & Holze, R. (2011). In situ Raman and UV-vis spectroscopic studies of polypyrrole and poly(pyrrole-2,6-dimethyl-β-cyclodextrin). Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 78, 1–6. DOI: 10.1016/j.saa.2009.12.026.

    Article  Google Scholar 

  • Ayad, M. M., & Zaki, E. A. (2008). Synthesis and characterisation of polyaniline films using Fenton reagent. Journal of Applied Polymer Science, 110, 3410–3419. DOI: 10.1002/app.28311.

    Article  CAS  Google Scholar 

  • Ayad, M. M., El-Nimr, M. K., & Zaki, E. A. (2009). Dielectric properties investigation of polyaniline prepared by using Fenton’s reagent. International Journal of Polymer Analysis and Characterisation, 14, 652–665. DOI: 10.1080/10236660903234827.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., Ćirić-Marjanović, G., & Sapurina, I. (2007). Polymerisation of aniline on polyaniline membranes. Journal of Physical Chemistry B, 111, 2440–2448. DOI: 10.1021/jp067370f.

    Article  CAS  Google Scholar 

  • Brillas, E., Mur, E., Sauleda, R., Sánchez, L., Peral, J., Domènech, X., & Casado, J. (1998). Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental Catalysis, 16, 31–42. DOI: 10.1016/s0926-3373 (97)00059-3.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109, 6570–6631. DOI: 10.1021/cr900136g.

    Article  CAS  Google Scholar 

  • Funke, B., Kolb, M., Jaser, P., & Braun, R. (1994). Behandlung von anilinhaltigem Abwasser mit Fentons Reagenz (Treatment of aniline containing waste water by Fenton’s reagent). Acta Hydrochimica et Hydrobiologica, 22, 6–9. DOI: 10.1002/aheh.19940220103. (in German)

    Article  CAS  Google Scholar 

  • He, H. X., Zhu, J. S., Tao, N. J. J., Nagahara, L. A., Amlani, I., & Tsui, R. (2001). A conducting polymer nanojunction switch. Journal of the American Chemical Society, 123, 7730–7731. DOI: 10.1021/ja016264i.

    Article  CAS  Google Scholar 

  • Holze, R. (2000). Spectroelectrochemistry of conducting polymers. In H. S. Nalwa (Ed.), Handbook of advanced electronic and photonic materials and devices (Vol. 8, pp. 209–302). San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Holze, R. (2001). Spectroelectrochemistry of intrinsically conducting polymers of aniline and substituted anilines. In H. S. Nalwa (Ed.), Advanced functional molecules and polymers (Vol. 2, pp. 171–222). Amsterdam, The Netherland: Gordon & Breach.

    Google Scholar 

  • Holze, R. (2007). Landolt-Börnstein: Numerical data and functional relationships in science and technology. In W. Martienssen, & M. D. Lechner (Eds.), New series, group IV: Physical chemistry (Vol. 9, pp. 41–46). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Holze, R. (2009). Surface and interface analysis: An electrochemists toolbox. Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Holze, R., & Lippe, J. (1990). A method for electrochemical in situ conductivity measurements of electrically synthesized intrinsically conducting polymers. Synthetic Metals, 38, 99–105. DOI: 10.1016/0379-6779(90)90072-s.

    Article  CAS  Google Scholar 

  • Inzelt, G., Pineri, M., Schultze, J. W., & Vorotyntsev, M. A. (2000). Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta, 45, 2403–2421. DOI: 10.1016/s0013-4686(00)00329-7.

    Article  CAS  Google Scholar 

  • Lippe, J., & Holze, R. (1991a). In situ spectroelectrochemical investigations of the solvent effect on polyaniline and polypyrrole. Molecular Crystals and Liquid Crystals, 208, 99–108. DOI: 10.1080/00268949108233947.

    Article  CAS  Google Scholar 

  • Lippe, J., & Holze, R. (1991b). Electrochemical in-situ conductivity and polaron concentration measurements at selected conducting polymers. Synthetic Metals, 43, 2927–2930. DOI: 10.1016/0379-6779(91)91208-r.

    Article  CAS  Google Scholar 

  • Lippe, J., & Holze, R. (1992). The anion-specific effect in the overoxidation of polyaniline and polyindoline. Journal of Electroanalytical Chemistry, 339, 411–422. DOI: 10.1016/0022-0728(92)80465-g.

    Article  CAS  Google Scholar 

  • Lu, W. K., Elsenbaumer, R. L., & Wessling, B. (1995). Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals, 71, 2163–2166. DOI: 10.1016/0379-6779(94)03204-j.

    Article  CAS  Google Scholar 

  • Marmisollé, W. A., Posadas, D., & Florit, M. I. (2008). Electrochemical aging of poly(aniline) and its ring substituted derivatives. Journal of Physical Chemistry B, 112, 10800–10805. DOI: 10.1021/jp800890k.

    Article  Google Scholar 

  • Marmisollé, W. A., Florit, M. I., & Posadas, D. (2011a). Electrochemically induced ageing of polyaniline monitored by the changes in voltammetric response. Journal of Electroanalytical Chemistry, 660, 26–30. DOI: 10.1016/j.jelechem.2011.05.027.

    Article  Google Scholar 

  • Marmisollé, W. A., Florit, M. I., & Posadas, D. (2011b). A formal representation of the anodic voltammetric response of polyaniline. Journal of Electroanalytical Chemistry, 655, 17–22. DOI: 10.1016/j.jelechem.2011.02.019.

    Article  Google Scholar 

  • Marmisollé, W. A., Florit, M. I., & Posadas, D. (2012). Effect of the potential on the electrochemically induced ageing of polyaniline films. Journal of Electroanalytical Chemistry, 669, 42–49. DOI: 10.1016/j.jelechem.2012.01.017.

    Article  Google Scholar 

  • Mu, S. L., Kan, J. Q., Lu, J. T., & Lin, Z. (1998). Interconversion of polarons and bipolarons of polyaniline during the electrochemical polymerisation of aniline. Journal of Electroanalytical Chemistry, 446, 107–112. DOI: 10.1016/s0022-0728(97)00529-9.

    Article  CAS  Google Scholar 

  • Ohsawa, T., Kimura, O., Onoda, M., & Yoshino, K. (1991). Polaron and bipolaron formation studied by ESR measurement in polyaniline. Synthetic Metals, 41, 719. DOI: 10.1016/0379-6779(91)91167-9.

    Article  Google Scholar 

  • Šeděnková, I., Trchová, M., & Stejskal, J. (2008). Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water — FTIR and Raman spectroscopic studies. Polymer Degradation and Stability, 93, 2147–2157. DOI: 10.1016/j.polymdegradstab.2008.08.007.

    Article  Google Scholar 

  • Stelter, M. (2001). Elektrokatalytische Sauerstoffreduktion an übergangsmetallporphyrinmodifizierten Graphitelektroden. Doctoral dissertation, Technische Universität Chemnitz, Germany. (in German)

    Google Scholar 

  • Walling, C. (1975). Fenton’s reagent revisited. Accounts of Chemical Research, 8, 125–131. DOI: 10.1021/ar50088a003.

    Article  CAS  Google Scholar 

  • Wessling, B., Kahol, P. K., Raghunathan, A., & McCormick, B. J. (2001). ESR and magnetic susceptibility studies of polyaniline and its blend with poly (methyl methacrylate). Synthetic Metals, 119, 197–198. DOI: 10.1016/s0379-6779(00)00710-4.

    Article  CAS  Google Scholar 

  • Will, F. G. (1986). A self-contained miniature hydrogen reference electrode. Journal of the Electrochemical Society, 133, 454–455. DOI: 10.1149/1.2108600.

    Article  CAS  Google Scholar 

  • Will, F. G., & Hess, H. J. (1973). Morphology and capacity of a cadmium electrode. Journal of the Electrochemical Society, 120, 1–11. DOI: 10.1149/1.2403393.

    Article  CAS  Google Scholar 

  • Yeh, J. M., Chen, C. L., Chen, Y. C., Ma, C. Y., Lee, K. R., Wie, Y. W., & Li, S. X. (2002). Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials. Polymer, 43, 2729–2736. DOI: 10.1016/s0032-3861(02)00005-8.

    Article  CAS  Google Scholar 

  • Zhu, H. P., & Mu, S. L. (2001). Effect of Fenton reagent on the synthesis of polyaniline. Synthetic Metals, 123, 293–297. DOI: 10.1016/s0379-6779(01)00303-4.

    Article  CAS  Google Scholar 

  • Zotti, G., Cattarin, S., & Comisso, N. (1988). Cyclic potential sweep electropolymerisation of aniline: The role of anions in the polymerisation mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 239, 387–396. DOI: 10.1016/0022-0728(88)80293-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedenkova, I., Dannenberg, F., Younadam, N. et al. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study. Chem. Pap. 67, 961–971 (2013). https://doi.org/10.2478/s11696-013-0330-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0330-z

Keywords

Navigation