Skip to main content
Log in

Influence of ethanol on the chain-ordering of carbonised polyaniline

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) was prepared by the oxidation of aniline hydrochloride with ammonium peroxydisulphate in water or in a water-ethanol mixture. In the presence of ethanol, PANI nanotubes and nanorods were observed. Both products were carbonised in a nitrogen atmosphere at 650°C. Initial and carbonised products were characterised by scanning and transmission electron microscopies, thermogravimetric analysis and wide-angle X-ray scattering. Their molecular structure was studied by UV-VIS, infrared, and Raman spectroscopies. Carbonised sample obtained from the PANI salt prepared in the presence of ethanol exhibits Raman spectrum which corresponds to a more ordered carbon-like material than carbonised samples obtained from the PANI base and the PANI salt prepared in pure water. The influence of ethanol present in the reaction mixture on the molecular and supra-molecular structure of PANI and, consequently, on the enhancement of chainordering of carbonised PANI is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boyer, M. I., Quillard, S., Rebourt, E., Louarn, G., Buisson, J. P., Monkman, A., & Lefrant, S. (1998). Vibrational analysis of polyaniline: A model compound approach. The Journal of Physical Chemistry B, 102, 7382–7392. DOI: 10.1021/jp972652o.

    Article  CAS  Google Scholar 

  • Chiou, N. R., Lee, L. J., & Epstein, A. J. (2007). Self-assembled polyaniline nanofibers/nanotubes. Chemistry of Materials, 19, 3589–3591. DOI: 10.1021/cm070847v.

    Article  CAS  Google Scholar 

  • Cho, Y. J., Kim, H. S., Baik, S. Y., Myung, Y., Jung, C. S., Kim, C. H., Park, J., & Kang, H. S. (2011). Selective nitrogen-doping structure of nanosize graphitic layers. The Journal of Physical Chemistry C, 115, 3737–3744. DOI: 10.1021/jp112141f.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008). The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI:10.1002/jrs.2007.

    Article  Google Scholar 

  • Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009). Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b.

    Article  Google Scholar 

  • Cochet, M., Louarn, G., Quillard, S., Boyer, M. I., Buisson, J. P., & Lefrant, S. (2000). Theoretical and experimental vibrational study of polyaniline in base forms: non-planar analysis. Part I. Journal of Raman Spectroscopy, 31, 1029–1039. DOI:10.1002/1097-4555(200011)31:11〈1029::aid-jrs640〉3.0.co;2-a.

    Article  CAS  Google Scholar 

  • Colomban, Ph., Folch, S., & Gruger, A. (1999). Vibrational study of short-range order and structure of polyaniline bases and salts. Macromolecules, 32, 3080–3092. DOI: 10.1021/ma981018l.

    Article  CAS  Google Scholar 

  • Cuesta, A., Dhamelincourt, P., Laureyns, J., Matrínez-Alonso, A., & Tascón, J. M. D. (1994) Raman microprobe studies on carbon materials. Carbon, 32, 1523–1532. DOI: 10.1016/0008-6223(94)90148-1.

    Article  CAS  Google Scholar 

  • do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2006). Electronic structure and doping behaviour of PANI-NSA nanofibers investigated by resonance Raman spectroscopy. Macromolecular Rapid Communications, 27, 255–259. DOI: 10.1002/marc.200500690.

    Article  Google Scholar 

  • do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2008). Spectroscopic characterisation of the structural changes of polyaniline nanofibres after heating. Polymer Degradation and Stability, 93, 291–297. DOI: 10.1016/j.polymdegradstab.2007.09.001.

    Article  Google Scholar 

  • El Khalki, A., Gruger, A., & Colomban, P. (2003). Bulksurface nanostructure and defects in polyaniline films and fibres. Synthetic Metals, 139, 215–220. DOI: 10.1016/s0379-6779(03)00129-2.

    Article  Google Scholar 

  • Epstein, A. J., Ginder, J. M., Zuo, F., Bigelow, R., Woo, H. S., Tanner, D. B., Richter, A. F., Huang, W. S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline. Synthetic Metals, 18, 303–309. DOI: 10.1016/0379-6779(87)90896-4.

    Article  CAS  Google Scholar 

  • Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143, 47–57. DOI:10.1016/j.ssc.2007.03.052.

    Article  CAS  Google Scholar 

  • Folch, S., Gruger, A., Régis, A., & Colomban, Ph. (1996). Optical and vibrational spectra of sols/solutions of polyaniline: water as secondary dopant. Synthetic Metals, 81, 221–225. DOI: 10.1016/s0379-6779(96)03745-9.

    Article  CAS  Google Scholar 

  • Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T., & Kawagoe, T. (1988). Vibrational spectra and structure of polyaniline. Macromolecules, 21, 1297–1305. DOI: 10.1021/ma00183a020.

    Article  CAS  Google Scholar 

  • Geng, Y. H., Li, J., Sun, Z. C., Jing, X. B., & Wang, F. S. (1998). Polymerization of aniline in an aqueous system containing organic solvents. Synthetic Metals, 96, 1–6. DOI: 10.1016/s0379-6779(98)00032-0.

    Article  CAS  Google Scholar 

  • Ghiurea, M., Spataru, C. I., Donescu, D., & Constantinescu, L. M. (2011). Aniline polymarization in ethanol-water mixtures. Revista de Materiale Plastice, 48, 263–267.

    CAS  Google Scholar 

  • Gruger, A., El Khalki, A., & Colomban, Ph. (2003). Protonation, sol formation and precipitation of poly- and oligoanilines. Journal of Raman Spectroscopy, 34, 438–450. DOI: 10.1002/jrs.1018.

    Article  CAS  Google Scholar 

  • Huang, W. S., & MacDiarmid, A. G. (1993). Optical properties of polyaniline. Polymer, 34, 1833–1845. DOI: 10.1016/0032-3861(93)90424-9.

    Article  CAS  Google Scholar 

  • Huang, J. X., & Kaner, R. B. (2004). Flash welding of conducting polymer nanofibres. Nature Materials, 3, 783–786. DOI: 10.1038/nmat1242.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI:10.1016/j.polymer.2008.12.016.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2010a). Exploration of the morphological transition phenomenon of polyaniline from microspheres to nanotubes in acid-free aqueous 1-propanol solution in a single polymerization process. Polymer International, 59, 1226–1232. DOI: 10.1002/pi.2852.

    Article  CAS  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2010b). The structure changeinduced morphology transition of polyaniline in 1.6-hexanediol aqueous and acid-free solutions: From submicronspheres to nanofibers. Synthetic Metals, 160, 384–389. DOI:10.1016/j.synthmet.2009.11.011.

    Article  CAS  Google Scholar 

  • Jin, C., Nagaiah, T. C., Xia, W., Spliethoff, B., Wang, S. S., Bron, M., Schuhmann, W., & Muhler, M. (2010). Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2, 981–987. DOI: 10.1039/b9nr00405j.

    Article  CAS  Google Scholar 

  • Kan, J. Q., Lv, R., & Zhang, S. L. (2004). Effect of ethanol on properties of electrochemically synthesized polyaniline. Synthetic Metals, 145, 37–42. DOI:10.1016/j.synthmet.2004.04.017.

    Article  CAS  Google Scholar 

  • Kan, J. Q., Zhang, S. L., & Jing, G. L. (2006). Effect of ethanol on chemically synthesized polyaniline nanothread. Journal of Applied Polymer Science, 99, 1848–1853. DOI: 10.1002/app.22345.

    Article  CAS  Google Scholar 

  • Kim, D. P., Lin, C. L., Mihalisin, T., Heiney, P., & Labes, M. M. (1991). Electronic properties of nitrogen-doped graphite flakes. Chemistry of Materials, 3, 686–692. DOI: 10.1021/cm00016a023.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006a). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI:10.1002/pi.1899.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Trchová, M., & Prokeš, J. (2011a). Suspension polymerization of aniline hydrochloride in non-aqueous media. Polymer International, 60, 794–797. DOI: 10.1002/pi.3017.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Reynaud, S., Pellerin, V., Trchová, M., Stejskal, J., & Sapurina, I. (2011b). Polyaniline prepared in ethylene glycol or glycerol. Polymer, 52, 1900–1907. DOI:10.1016/j.polymer.2011.02.047.

    Article  CAS  Google Scholar 

  • Langer, J. J., & Golczak, S. (2007). Highly carbonized polyaniline micro- and nanotubes. Polymer Degradation and Stability, 92, 330–334. DOI:10.1016/j.polymdegradstab.2006.07.018.

    Article  CAS  Google Scholar 

  • Larouche, N., & Stansfield, B. L. (2010). Classifying nanostrucctured carbons using graphitic indices derived from Raman spectra. Carbon, 48, 620–629. DOI:10.1016/j.carbon.2009.10.002.

    Article  CAS  Google Scholar 

  • Lei, Z. B., Zhao, M. Y., Dang, L. Q., An, L. Z., Lu, M., Lo, A. Y., Yu, N. Y., & Liu, S. B. (2009). Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 19, 5985–5995. DOI: 10.1039/b908223a.

    Article  CAS  Google Scholar 

  • Li, L. M., Liu, E. H., Li, J., Yang, Y. J., Shen, H. J., Huang, Z. Z., Xiang, X. X., & Li, W. (2010). A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, 195, 1516–1521. DOI:10.1016/j.jpowsour.2009.09.016.

    Article  CAS  Google Scholar 

  • Li, Y. L., Wang, J. J., Li, X. F., Liu, J., Geng, D. S., Yang, J. L., Li, R. Y., & Sun, X. L. (2011). Nitrogendoped carbon nanotubes as cathode for lithium-air batteries. Electrochemistry Communications, 13, 668–672. DOI:10.1016/j.elecom.2011.04.004.

    Article  CAS  Google Scholar 

  • Lin, L., Niu, H. J., Zhang, M. L., Song, W., Wang, Z., & Bai, X. D. (2008). Electron field emission from amorphous carbon with N-doped nanostructures pyrolysed form polyaniline. Applied Surface Science, 254, 7250–7254. DOI:10.1016/j.apsusc.2008.05.347.

    Article  CAS  Google Scholar 

  • Louarn, G., Lapkowski, M., Quillard, S., Pron, A., Buisson, J. P., & Lefrant, S. (1996). Vibrational properties of polyaniline — isotope effects. The Journal of Physical Chemistry, 100, 6998–7006. DOI: 10.1021/jp953387e.

    Article  CAS  Google Scholar 

  • Lucchese, M. M., Stavale, F., Martins Ferreira, E. H., Vilani, C., Moutinho, M. V. O., Capaz, R. B., Achete, C. A., & Jorio, A. (2010). Quantifying ion-iduced defects and Raman relaxation length in graphene. Carbon, 48, 1592–1599. DOI:10.1016/j.carbon.2009.12.057.

    Article  CAS  Google Scholar 

  • MacDiarmid, A. G., Chiang, J. C., Richter, A. F., & Epstein, A. J. (1987). Polyaniline: a new concept in conducting polymers. Synthetic Metals, 18, 285–290. DOI: 10.1016/0379-6779(87)90893-9.

    Article  CAS  Google Scholar 

  • Mentus, S., Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2009). Conducting carbonized polyaniline nanotubes. Nanotechnology, 20, 245601. DOI: 10.1088/0957-4484/20/24/245601.

    Article  Google Scholar 

  • Morávková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2012a). The carbonization of thin polyaniline films. Thin Solid Films, 520, 6088–6094. DOI:10.1016/j.tsf.2012.05.067.

    Article  Google Scholar 

  • Morávková, Z., Trchová, M., Tomšík, E., Čechvala, J., & Stejskal, J. (2012b). Enhanced thermal stability of multiwalled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI:10.1016/j.polymdegradstab.2012.05.019.

    Article  Google Scholar 

  • Nemanich, R. J., & Solin, S. A. (1979). First- and second-order Raman scattering from finite-size crystals of graphite. Physical Review B, 20, 392–401. DOI: 10.1103/physrevb.20.392.

    Article  CAS  Google Scholar 

  • Park, M. C., Sun, Q. H., & Deng, Y. L. (2007). Polyaniline microspheres consisting of highly crystallized nanorods. Macromolecular Rapid Communications, 28, 1237–1242. DOI:10.1002/marc.200700066.

    Article  CAS  Google Scholar 

  • Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cançado, L. G., Jorio, A., & Saito, R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 9, 1276–1291. DOI: 10.1039/b613962k.

    Article  CAS  Google Scholar 

  • Pouget, J. P., Józefowicz, M. E., Epstein, A. J., Tang, X., & MacDiarmid, A. G. (1991). X-ray structure of polyaniline. Macromolecules, 24, 779–789. DOI: 10.1021/ma00003a022.

    Article  CAS  Google Scholar 

  • Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011a). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI:10.1016/j.synthmet.2011.03.034.

    Article  Google Scholar 

  • Rozlívková, Z., Trchová, M., Šeděnková, I., Špírková, M., & Stejskal, J. (2011b). Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. Thin Solid Films, 519, 5933–5941. DOI:10.1016/j.tsf.2011.03.025.

    Article  Google Scholar 

  • Šeděnková, I., Trchová, M., Blinova, N. V., & Stejskal, J. (2006). In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 515, 1640–1646. DOI:10.1016/j.tsf.2006.05.038.

    Google Scholar 

  • Šeděnková, I., Trchová, M., Stejskal, J., & Bok, J. (2007). Polymerization of aniline in the solutions of strong and weak acids: The evolution of infrared spectra and their interpretation using factor analysis. Applied Spectroscopy, 61, 1153–1163. DOI:10.1366/000370207782597058.

    Article  Google Scholar 

  • Šeděnková, I., Trchová, M., & Stejskal, J. (2008). Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water — FTIR and Raman spectroscopic studies. Polymer Degradation and Stability, 93, 2147–2157. DOI:10.1016/j.polymdegradstab.2008.08.007.

    Article  Google Scholar 

  • Shao, Y. Y., Sui, J. H., Yin, G. P., & Gao, Y. Z. (2008). Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 79, 89–99. DOI:10.1016/j.apcatb.2007.09.047.

    Article  CAS  Google Scholar 

  • Song, G. P., Han, J., & Guo, R. (2007). Synthesis of polyaniline/NiO nanobelts by a self-assembly process. Synthetic Metals, 157, 170–175. DOI:10.1016/j.synthmet.2006.12.007.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI:10.1351/pac200274050857.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., & Sapurina, I. (2005). Flameretardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 98, 2347–2354. DOI: 10.1002/app.22144.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI:10.1016/j.polymer.2006.10.007.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Brodinová, J., & Sapurina, I. (2007). Flame retardancy afforded by polyaniline deposited on wood. Journal of Applied Polymer Science, 103, 24–30. DOI: 10.1002/app.23873.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010a). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI:10.1016/j.progpolymsci.2010.07.006.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Hromádková, J., Kovářová, J., & Kalendová, A. (2010b). The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polymer International, 59, 875–878. DOI: 10.1002/pi.2858.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179.

    Article  CAS  Google Scholar 

  • Strong, V., Wang, Y., Patatanyan, A., Whitten, P. G., Spinks, G. M., Wallace, G. G., & Kaner, R. B. (2011). Direct submicrometer patterning of nanostructured conducting polymer films via a low-energy infrared laser. Nano Letters, 11, 3128–3135. DOI:10.1021/nl2011593.

    Article  CAS  Google Scholar 

  • Sun, Y. Y., Guo, G. Z., Yang, B. H., Tian, Y., He, M. H., Liu, Y. Q., & Zhao, G. Z. (2011). Facile synthesis of polyaniline micro-rods with high yield. Synthetic Metals, 161, 2206–2210. DOI:10.1016/j.synthmet.2011.07.022.

    Article  CAS  Google Scholar 

  • Tomšík, E., Morávková, Z., Stejskal, J., Trchová, M., Šálek, P., Kovářová, J., Zemek, J., Cieslar, M., & Prokeš, J. (2013). Nitrogen-containing carbon coating of multi-wall carbon nanotubes. Chemical Papers, accepted. DOI: 10.2478/s11696-013-0348-2.

    Google Scholar 

  • Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a.

    Article  CAS  Google Scholar 

  • Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006a). Evolution of polyaniline nanotubes: The oxidation of aniline in water. The Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g.

    Article  Google Scholar 

  • Trchová, M., Matějka, P., Brodinová, J., Kalendová, A., Prokeš, J., & Stejskal, J. (2006b). Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 91, 114–121. DOI:10.1016/j.polymdegradstab.2005.04.022.

    Article  Google Scholar 

  • Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářov⇇ J., & Ćirić-Marjanović, G. (2009) The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI:10.1016/j.polymdegradstab.2009.03.001.

    Article  Google Scholar 

  • Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC technical report). Pure and Applied Chemistry, 83, 1803–1817. DOI: 10.1351/pac-rep-10-02-01.

    Article  Google Scholar 

  • van Dommele, S., de Jong, K. P., & Bitter, J. H. (2006). Nitrogen-containing carbon nanotubes as solid base catalysts. Chemistry Communications, 2006, 4859–4861. DOI: 10.1039/b610208e.

    Article  Google Scholar 

  • Varma, S. J., Xavier, F., Varghese, S., & Jayalekshmi, S. (2012). Synthesis and studies of exceptionally crystalline polyaniline thin films. Polymer International, 61, 743–748. DOI: 10.1002/pi.4131.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, N., Yan, X., Zhang, W. J., & Wei, Y. (2005). Alkali-guided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI:10.1246/cl.2005.42.

    Article  Google Scholar 

  • Wang, X., Sun, T. L., Wang, C. Y., Wang, C., Zhang, W. J., & Wei, Y. (2010). 1H NMR determination of the doping level of doped polyaniline. Macromolecular Chemistry and Physics, 211, 1814–1819. DOI:10.1002/macp.201000194.

    Article  CAS  Google Scholar 

  • Watanabe, A., Mori, K., Iwasaki, Y., Nakamura, Y., & Niizuma, S. (1987). Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules, 20, 1793–1796. DOI: 10.1021/ma00174a015.

    Article  CAS  Google Scholar 

  • Wu, J. H., Tang, Q. W., Li, Q. H., & Lin, J. M. (2008a). Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 49, 5262–5267. DOI:10.1016/j.polymer.2008.09.044.

    Article  CAS  Google Scholar 

  • Wu, G., Swaidan, R., Li, D. Y., & Li, N. (2008b). Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochimica Acta, 53, 7622–7629. DOI:10.1016/j.electacta.2008.03.082.

    Article  CAS  Google Scholar 

  • Wu, C. G., Chiang, C. H., & Jeng, U. S. (2008c). Phenol assisted deaggregation of polyaniline chains: Simple route to high quality polyaniline film. The Journal of Physical Chemistry B, 112, 6772–6778. DOI: 10.1021/jp800932y.

    Article  CAS  Google Scholar 

  • Xiang, H. Q., Fang, S. B., & Jiang, Y. Y. (2002). Carbons prepared from boron-containing polymers as host materials for lithium insertion. Solid State Ionics, 148, 35–43. DOI: 10.1016/s0167-2738(02)00108-x.

    Article  CAS  Google Scholar 

  • Yang, M., Xiang, Z. J., & Wand, G. (2012). A novel orchidlike polyaniline superstructure by solvent-thermal method. Journal of Colloid and Interface Science, 367, 49–54. DOI:10.1016/j.jcis.2011.08.086.

    Article  CAS  Google Scholar 

  • Zhang, Z. M., Wei, Z. X., & Wan, M. X. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Peng, H., Hsu, C. F., Kilmartin, P. A., & Travas-Sejdic, J. (2007a). Self-assembled polyaniline nanotubes grown from a polymeric acid solution. Nanotechnology, 18, 115607. DOI: 10.1088/0957-4484/18/11/115607.

    Article  Google Scholar 

  • Zhang, L. J., Peng, H., Kilmartin, P. A., Soeller, C., & Travas-Sejdic, J. (2007b). Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis, 19, 870–875. DOI:10.1002/elan.200603790.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Zhang, Z. M., Kilmartin, P. A., & Travas-Sejdic, J. (2011). Hollow polyaniline and indomethacin composite microspheres for controlled indomethacin release. Macromolecular Chemistry and Physics, 212, 2674–2684. DOI:10.1002/macp.201100379.

    Article  CAS  Google Scholar 

  • Zhou, S., Wu, T., & Kan, J. Q. (2007). Effect of methanol on morphology of polyaniline. European Polymer Journal, 43, 395–402. DOI:10.1016/j.eurpolymj.2006.11.011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Morávková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morávková, Z., Trchová, M., Tomšík, E. et al. Influence of ethanol on the chain-ordering of carbonised polyaniline. Chem. Pap. 67, 919–932 (2013). https://doi.org/10.2478/s11696-013-0329-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0329-5

Keywords

Navigation