Skip to main content
Log in

Kinetics of thermal decomposition of aseptic packages

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Kinetics of thermal decomposition of aseptic packages (e.g. Tetrapak cartons) and pyrolysis of this waste in a laboratory flow reactor was studied. Three different models for the calculation of the reaction rate and the determination of apparent kinetic parameters of thermal decomposition were used. The first method assumes a two stage thermal decomposition and the kinetic parameters were determined by fitting a derivative thermogravimetric (DTG) curve to experimentally determined thermogravimetric data of whole aseptic cartons. The second method uses kinetic parameters determined by fitting DTG curves to thermogravimetric data of individual components of aseptic packages. The last method was a multi-curve isoconversion method assuming a change of kinetic parameters with the increasing conversion. All types of the determined kinetic parameters were used in a mathematical model for thermal decomposition of mini briquettes made from aseptic packages at the temperature of 650°C. The model calculated also the heat conduction in the particles and it was verified by an independent set of experiments conducted in a laboratory screw type flow reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gašparovič, L., Hrablay, I., Vojteková, Z., & Jelemenský, Ľ. (2011). Kinetic study of pyrolysis of waste water treatment plant sludge. Chemical Papers, 65, 139–146, DOI: 10.2478/s11696-010-0081-z.

    Article  Google Scholar 

  • Grammelis, P., Basinas, P., Malliopoulou, A., & Sakellaropoulos, G. (2009). Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel, 88, 195–205. DOI: 10.1016/j.fuel.2008.02.002.

    Article  CAS  Google Scholar 

  • Haydary, J., Jelemenský, Ľ., Markoš, J., & Annus, J. (2009). A laboratory set-up with a flow reactor for waste tire pyrolysis. KGK — Kautschuk Gummi Kunststoffe, 62, 661–665.

    CAS  Google Scholar 

  • Haydary, J., Jelemenský, Ľ., Gašparovič, L., & Markoš, J. (2012). Influence of particle size and kinetic parameters on tire pyrolysis. Journal of Analytical and Applied Pyrolysis, 97, 73–79. DOI: 10.1016/j.jaap.2012.07.003.

    Article  CAS  Google Scholar 

  • Hernández, M. R., García, Á. N., & Marcilla, A. (2007). Catalytic flash pyrolysis of HDPE in a fluidized bed reactor for recovery of fuel-like hydrocarbons. Journal of Analytical and Applied Pyrolysis, 78, 272–281. DOI: 10.1016/j.jaap.2006.03.009.

    Article  Google Scholar 

  • Korkmaz, A., Yanik, J., Brebu, M., & Vasile, C. (2009). Pyrolysis of the tetra pak. Waste Management, 29, 2836–2841. DOI: 10.1016/j.wasman.2009.07.008.

    Article  CAS  Google Scholar 

  • Lédé, J. (2012). Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose. Journal of Analytical and Applied Pyrolysis, 94, 17–32. DOI: 10.1016/j.jaap.2011.12.019.

    Article  Google Scholar 

  • Lomakin, S. M., Rogovina, S. Z., Grachev, A. V., Prut, E. V., & Alexanyan, Ch. V. (2011). Thermal degradation of biodegradable blends of polyethylene with cellulose and ethylcellulose. Thermochimica Acta, 521, 66–73. DOI: 10.1016/j.tca.2011.04.005.

    Article  CAS  Google Scholar 

  • Milne, B. J., Behie, L. A., & Berruti, F. (1999). Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 51, 157–166. DOI: 10.1016/s0165-2370(99)00014-5.

    Article  CAS  Google Scholar 

  • Paradela, F., Pinto, F., Ramos, A. M., Gulyurtlu, I., & Cabrita, I. (2009). Study of the slow batch pyrolysis of mixtures of plastics, tyres and forestry biomass wastes. Journal of Analytical and Applied Pyrolysis, 85, 392–398. DOI: 10.1016/j.jaap.2008.09.003.

    Article  CAS  Google Scholar 

  • Reyes, J. A., Conesa, J. A., & Marcilla, A. (2001). Pyrolysis and combustion of polycoated cartons: kinetic model and MSanalysis. Journal of Analytical and Applied Pyrolysis, 58–59, 747–763. DOI: 10.1016/s0165-2370(00)00123-6.

    Article  Google Scholar 

  • Worasuwannarak, N., Sonobe, T., & Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corn cob by TG-MS technique. Journal of Analytical and Applied Pyrolysis, 78, 265–271. DOI: 10.1016/j.jaap.2006.08.002.

    Article  CAS  Google Scholar 

  • Wu, C. H., & Chang, H. S. (2001). Pyrolysis of tetra pack in municipal solid waste. Journal of Chemical Technology and Biotechnology, 76, 779–792. DOI: 10.1002/jctb.404.

    Article  CAS  Google Scholar 

  • Wu, C. H., Chang, C. Y., Liu, Y. F., & Yan, Y. L. (2003). Effects of oxygen on pyrolysis kinetics of Tetra Pack. Journal of Environmental Engineering, 129, 382–386. DOI: 10.1061/(ASCE)0733-9372(2003)129:4(382).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juma Haydary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haydary, J., Susa, D. Kinetics of thermal decomposition of aseptic packages. Chem. Pap. 67, 1514–1520 (2013). https://doi.org/10.2478/s11696-013-0319-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0319-7

Keywords

Navigation