Skip to main content
Log in

Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Production of bioproducts is associated with the generation of considerable amounts of effluents from the bioreactors used. Application of the nanofiltration process was proposed for the treatment of these effluents in order to separate both inorganic and organic solutes. Composition of the fermentation broth precludes the utilization of traditional spiral-wound modules (high turbidity) for the solutes separation in the NF process. The tubular module with AFC30 membranes applied in this work enables such a possibility. Transport and separation characteristics of the NF membrane were determined for the reference solutions containing components present in the effluents generated during the fermentation of glycerol with the use of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bellona, C., Marts, M., & Drewes, J. E. (2010). The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Separation and Purification Technology, 74, 44–54. DOI: 10.1016/j.seppur.2010.05.006.

    Article  CAS  Google Scholar 

  • Bouchoux, A., Roux-de Balmann, H., & Lutin, F. (2005). Nanofiltration of glucose and sodium lactate solutions: Variations of retention between single- and mixed-solute solutions. Journal of Membrane Science, 258, 123–132. DOI:10.1016/j.memsci.2005.03.002.

    Article  CAS  Google Scholar 

  • Chateau, M., Soucaille, P., & Dubois, J. Y. (2011). WO Patent No. 2011042434. Geneva, Switzerland: Word Intellectual Property Organization.

  • Chatzifragkou, A., Papanikolaou, S., Dietz, D., Doulgeraki, A. I., Nychas, G. J. E., & Zeng, A. P. (2011). Production of 1,3-propanediol by Clostridium butyricum growing on biodieselderived crude glycerol through a non-sterilized fermentation process. Applied Microbiology Biotechnology, 91, 101–112. DOI: 10.1007/s00253-011-3247-x.

    Article  CAS  Google Scholar 

  • Cho, M. H., Joen, S. I., Pyo, S. H., Mun, S. Y., & Kim, J. H. (2006). A novel separation and purification process for 1,3-propanediol. Process Biochemistry, 41, 739–744. DOI: 10.1016/j.procbio.2005.11.013.

    Article  CAS  Google Scholar 

  • Choi, J. H., Fukushi, K., & Yamamoto, K. (2008). A study on the removal of organic acids from wastewaters using nanofiltration membranes. Separation and Purification Technology, 59, 17–25. DOI:10.1016/j.seppur.2007.05.021.

    Article  CAS  Google Scholar 

  • Choudhury, B., & Swaminathan, T. (2006). Lactic acid fermentation in cell-recycle membrane bioreactor. Applied Biochemistry and Biotechnology, 128, 171–183. DOI: 10.1385/abab:128:2:171.

    Article  CAS  Google Scholar 

  • Gong, Y., Tang, Y., Wang, X. L., Yu, L. X., & Liu, D. H. (2004). The possibility of the desalination of actual 1,3 propanediol fermentation broth by electrodialysis. Desalination, 161, 169–178. DOI: 10.1016/s0011-9164(04)90052-5.

    Article  CAS  Google Scholar 

  • González, M. I., Alvarez, S., Riera, F. A., & Álvarez, R. (2008). Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228, 84–96. DOI:10.1016/j.desal.2007.08.009.

    Article  Google Scholar 

  • Gungormusler, M., Gonen, C., & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess and Biosystems Engineering, 34, 727–733. DOI: 10.1007/s00449-011-0522-2.

    Article  CAS  Google Scholar 

  • Hao, J., Xu, F., Liu, H. J., & Liu, D. H. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81, 102–108. DOI: 10.1002/jctb.1369.

    Article  CAS  Google Scholar 

  • Ji, X. J., Huang, H., Zhu, J. G., Hu, N., & Li, S. A. (2009). Efficient 1,3-propanediol production by fed-batch culture of Klebsiella pneumoniae: The role of pH fluctuation. Applied Microbiology and Biotechnology, 159, 605–613. DOI: 10.1007/s12010-008-8492-9.

    CAS  Google Scholar 

  • Kiso, Y., Muroshige, K., Oguchi, T., Yamada, T., Hhirose, M., Ohara, T., & Shintani, T. (2010). Effect of molecular shape on rejection of uncharged organic com pounds by nanofiltration membranes and on calculated pore radii. Journal of Membrane Science, 358, 101–113. DOI: 10.1016/j.memsci.2010.04.034.

    Article  CAS  Google Scholar 

  • Luo, J. Q., & Wan, Y. H. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 372, 145–153. DOI:10.1016/j.memsci.2011.01.066.

    Article  CAS  Google Scholar 

  • Nikel, P. I., Ramirez, M. C., Pettinari, M. J., Méndez, B. S., & Galvagno, M. A. (2010). Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides. Journal of Applied Microbiology, 109, 492–504, DOI: 10.1111/j.1365-2672.2010.04668.x.

    CAS  Google Scholar 

  • Othman, R., Wahab Mohammad, A., Ismaila M., & Salimon, J. (2010). Application of polymeric solvent resistant nanofiltration membranes for biodiesel production. Journal of Membrane Science, 348, 287–297. DOI: 10.1016/j.memsci.2009.11.012.

    Article  CAS  Google Scholar 

  • Ribau Teixeira, M., Rosa, M. J., & Nyström, M. (2005). The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 265, 160–166. DOI: 10.1016/j.memsci.2005.04.046.

    Article  Google Scholar 

  • Schäfer, A. I., Fane, A. G., & Waite, T. D. (Eds.) (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.

    Google Scholar 

  • Timmer, J. M. K., Kromkamp, J., & Robbertsen, T. (1994). Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration. Journal of Membrane Science, 92, 185–197. DOI: 10.1016/0376-7388(94)00061-1.

    Article  CAS  Google Scholar 

  • Van der Bruggen, B., Schaep, J., Wilms, D., & Vandecasteele, C. (1999). Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. Journal of Membrane Science, 156, 29–41. DOI: 10.1016/s0376-7388(98)00326-3.

    Article  Google Scholar 

  • Vellenga, E., & Trägårdh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211–220. DOI: 10.1016/s0011-9164(98)00219-7.

    Article  CAS  Google Scholar 

  • Wu, R. C., Ren, H. J., Xu, Y. Z., & Liu, D. H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Separation and Purification Technology, 73, 122–125. DOI: 10.1016/j.seppur.2010.03.013.

    Article  CAS  Google Scholar 

  • Xiu, Z. L., & Zeng, A. P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Applied Microbiology and Biotechnology, 78, 917–926. DOI: 10.1007/s00253-008-1387-4.

    Article  CAS  Google Scholar 

  • XYLEM Inc. (2012). PCI membranes. Retrieved October 22, 2012, from http://www.pcimembranes.pl/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Gryta.

Additional information

Presented at the 39th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakulski, K., Gryta, M. & Bastrzyk, J. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chem. Pap. 67, 1164–1171 (2013). https://doi.org/10.2478/s11696-013-0314-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0314-z

Keywords

Navigation