Skip to main content
Log in

Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles

  • Original Papers
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The condensation reaction of o-phenylenediamine and arylaldehydes was investigated in the presence of nanosized sulfated zirconia (SO 2−4 -ZrO2) as the solid acid catalyst. Nanosized SO 2−4 -ZrO2 was prepared and characterized by the XRD, FT-IR, and SEM techniques. The results confirm good stabilization of the tetragonal phase of zirconia in the presence of sulfate. Reusability experiments showed partial deactivation of the catalyst after each run; good reusability can be achieved after calcinations of the recovered catalyst before its reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi-Alibeik, M., Mohammadpoor-Baltork, I., Zaghaghi, Z., & Yousefi, B. H. (2008). Efficient synthesis of 1,5-benzodiazepines catalyzed by silica supported 12-tungstophosphoric acid. Catalysis Communications, 9, 2496–2502. DOI:10.1016/j.catcom.2008.07.004.

    Article  CAS  Google Scholar 

  • Abdollahi-Alibeik, M., & Zaghaghi, Z. (2009). 1,3-Dibromo-5,5-dimethylhydantoin as a useful reagent for efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Chemical Papers, 63, 97–101. DOI: 10.2478/s11696-008-0084-1.

    Article  CAS  Google Scholar 

  • Abdollahi-Alibeik, M., & Moosavifard, M. (2010). FeCl3-doped polyaniline nanoparticles as reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles. Synthetic Communications, 40, 2686–2695. DOI: 10.1080/00397910903318658.

    Article  CAS  Google Scholar 

  • Abdollahi-Alibeik, M., & Pouriayevali, M. (2011). 12-Tungstophosphoric acid supported on nano sized MCM-41 as an efficient and reusable solid acid catalyst for the three-component imino Diels-Alder reaction. Reaction Kinetics, Mechanisms and Catalysis, 104, 235–248. DOI: 10.1007/s11144-011-0345-9.

    Article  CAS  Google Scholar 

  • Abdollahi-Alibeik, M., & Heidari-Torkabad, E. (2012). H3PW12 O40/MCM-41 nanoparticles as efficient and reusable solid acid catalyst for the synthesis of quinoxalines. Comptes Rendus Chimie, 15, 517–523. DOI:10.1016/j.crci.2012.04.005.

    Article  CAS  Google Scholar 

  • Abdollahi-Alibeik, M., & Pouriayevali, M. (2012). Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catalysis Communications, 22, 13–18. DOI:10.1016/j.catcom.2012.02.004.

    Article  CAS  Google Scholar 

  • Adam, F., Batagarawa, M., Hello, K., & Al-Juaid, S. (2012). One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer. Chemical Papers, 66, 1048–1058. DOI: 10.2478/s11696-012-0203-x.

    Article  CAS  Google Scholar 

  • Chen, G. F., & Dong, X. Y. (2012). Facile and selective synthesis of 2-substituted benzimidazoles catalyzed by FeCl3/Al2O3. E-Journal of Chemistry, 9, 289–293. DOI:10.1155/2012/197174.

    Article  CAS  Google Scholar 

  • Denny, W. A., Rewcastle, G. W., & Baguley, B. C. (1990). Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. Journal of Medicinal Chemistry, 33, 814–819. DOI: 10.1021/jm00164a054.

    Article  CAS  Google Scholar 

  • Dhakshinamoorthy, A., Kanagaraj, K., & Pitchumani, K. (2011). Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 52, 69–73. DOI:10.1016/j.tetlet.2010.10.146.

    Article  CAS  Google Scholar 

  • Du, L. H., & Wang, Y. G. (2007). A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant. Synthesis, 2007, 675–678. DOI:10.1055/s-2007-965922.

    Article  Google Scholar 

  • Dudd, L. M., Venardou, E., Garcia-Verdugo, E., Licence, P., Blake, A. J., Wilson, C., & Poliakoff, M. (2003). Synthesis of benzimidazoles in high-temperature water. Green Chemistry, 5, 187–192. DOI: 10.1039/b212394k.

    Article  CAS  Google Scholar 

  • Fekner, T., Gallucci, J., & Chan, M. K. (2004). Ruffling-induced chirality: Synthesis, metalation, and optical resolution of highly nonplanar, cyclic, benzimidazole-based ligands. Journal of the American Chemical Society, 126, 223–236. DOI: 10.1021/ja030196d.

    Article  CAS  Google Scholar 

  • Fonseca, T., Gigante, B., & Gilchrist, T. L. (2001). A short synthesis of phenanthro[2,3-d]imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles. Tetrahedron, 57, 1793–1799. DOI: 10.1016/s0040-4020(00)01158-3.

    CAS  Google Scholar 

  • Hasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T., & Yanagi, K. (1999). Reductive transformation of α, β-epoxy ketones and other compounds promoted through photoinduced electron transfer processes with 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI). Tetrahedron, 55, 12957–12968. DOI: 10.1016/s0040-4020(99)00804-2.

    Article  CAS  Google Scholar 

  • Hein, D. W., Alheim, R. J., & Leavitt, J. J. (1957). The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles. Journal of the American Chemical Society, 79, 427–429. DOI: 10.1021/ja01559a053.

    Article  CAS  Google Scholar 

  • Karami, B., Khodabakhshi, S., & Haghighijou, Z. (2012). Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles. Chemical Papers, 66, 684–690. DOI: 10.2478/s11696-012-0152-4.

    Article  CAS  Google Scholar 

  • Katritzky, A. R., Aslan, D. C., & Oniciu, D. C. (1998). Stereoselective synthesis of 2-(α-hydroxyalkyl)benzimidazoles. Tetrahedron: Asymmetry, 9, 2245–2251. DOI: 10.1016/s0957-4166(98)00202-x.

    Article  CAS  Google Scholar 

  • Lopez, S. E., Restrepo, J., Perez, B., Ortiz, S., & Salazar, J. (2009). One pot microwave promoted synthesis of 2-aryl-1H-benzimidazoles using sodium hydrogen sulfite. Bulletin of the Korean Chemical Society, 30, 1628–1630. DOI:10.5012/bkcs.2009.30.7.1628.

    Article  CAS  Google Scholar 

  • Mohammadpoor-Baltork, I., Khosropour, A. R., & Hojati, S. F. (2007). ZrOCl2 ·8H2O as an efficient, environmentally friendly and reusable catalyst for synthesis of benzoxazoles, benzothiazoles, benzimidazoles and oxazolo[4,5-b]pyridines under solvent-free conditions. Catalysis Communications, 8, 1865–1870. DOI:10.1016/j.catcom.2007.02.020.

    Article  CAS  Google Scholar 

  • Nadaf, R. N., Siddiqui, S. A., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2004). Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. Journal of Molecular Catalysis A: Chemical, 214, 155–160. DOI:10.1016/j.molcata.2003.10.064.

    Article  CAS  Google Scholar 

  • Negrón, G. E., Palacios, L. N., Angeles, D., Lomas, L., & Gaviñno, R. (2005). A mild and efficient method for the chemoselective synthesis of acylals from aromatic aldehydes and their deprotections catalyzed by sulfated zirconia. Journal of the Brazilian Chemical Society, 16, 490–494. DOI:10.1590/s0103-50532005000300025.

    Article  Google Scholar 

  • Ponnala, S., & Prasad Sahu, D. (2006). Iodine-mediated synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 1,3,5-trisubstituted pyrazoles. Synthetic Communications, 36, 2189–2194. DOI: 10.1080/00397910600638879.

    Article  Google Scholar 

  • Reddy, B. M., & Patil, M. K. (2009). Organic syntheses and transformations catalyzed by sulfated zirconia. Chemical Reviews, 109, 2185–2208. DOI: 10.1021/cr900008m.

    Article  CAS  Google Scholar 

  • Rekha, M., Hamza, A., Venugopal, B. R., & Nagaraju, N. (2012). Synthesis of 2-substituted benzimidazoles and 1,5-disubstituted benzodiazepines on alumina and zirconia catalysts. Chinese Journal of Catalysis, 33, 439–446. DOI:10.1016/s1872-2067(11)60338-0.

    Article  CAS  Google Scholar 

  • Song, X. Q., Vig, B. S., Lorenzi, P. L., Drach, J. C., Townsend, L. B., & Amidon, G. L. (2005). Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(β-d-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter. Journal of Medicinal Chemistry, 48, 1274–1277. DOI: 10.1021/jm049450i.

    Article  CAS  Google Scholar 

  • Srinivas, U., Srinivas, Ch., Narender, P., Rao, V. J., & Palaniappan, S. (2007). Polyaniline-sulfate salt as an efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines and 2-phenyl benzimidazoles. Catalysis Communications, 8, 107–110. DOI:10.1016/j.catcom.2006.05.022.

    Article  CAS  Google Scholar 

  • Tyagi, B., Mishra, M. K., & Jasra, R. V. (2007). Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. Journal of Molecular Catalysis A: Chemical, 276, 47–56. DOI:10.1016/j.molcata.2007.06.003.

    Article  CAS  Google Scholar 

  • Tyagi, B., Mishra, M. K., & Jasra, R. V. (2009). Solvent free synthesis of 7-isopropyl-1,1-dimethyltetralin by the rearrangement of longifolene using nano-crystalline sulfated zirconia catalyst. Journal of Molecular Catalysis A: Chemical, 301, 67–78. DOI:10.1016/j.molcata.2008.11.011.

    Article  CAS  Google Scholar 

  • Valdez, J., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Navarrete-Vázquez, G., Tapia, A., Cortés, R., Hernándey, M., & Castillo, R. (2002). Synthesis and antiparasitic activity of 1H-benzimidazole derivatives. Bioorganic & Medicinal Chemistry Letters, 12, 2221–2224. DOI: 10.1016/s0960-894x(02)00346-3.

    Article  CAS  Google Scholar 

  • Varala, R., Nasreen, A., Enugala, R., & Adapa, S. R. (2007). l-Proline catalyzed selective synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles. Tetrahedron Letters, 48, 69–72. DOI:10.1016/j.tetlet.2006.11.010.

    Article  CAS  Google Scholar 

  • Wolfson, A., Madhusudhan, R., Shapira-Tchelet, A., & Landau, M. (2009). Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of Friedel-Crafts acylation. Chemical Papers, 63, 291–297. DOI: 10.2478/s11696-009-0018-6.

    Article  CAS  Google Scholar 

  • Yamaguchi, T. (1994). Application of ZrO2 as a catalyst and a catalyst support. Catalysis Today, 20, 199–217. DOI: 10.1016/0920-5861(94)80003-0.

    Article  CAS  Google Scholar 

  • Yu, S. J., Jiang, P. P., Dong, Y. M., Zhang, P. B., Zhang, Y., & Zhang, W. J. (2012). Hydrothermal synthesis of nanosized sulfated zirconia as an efficient and reusable catalyst for esterification of acetic acid with n-butanol. Bulletin of the Korean Chemical Society, 33, 524–528. DOI:10.5012/bkcs.2012.33.2.524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdollahi-Alibeik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdollahi-Alibeik, M., Hajihakimi, M. Nanosized sulfated zirconia as solid acid catalyst for the synthesis of 2-substituted benzimidazoles. Chem. Pap. 67, 490–496 (2013). https://doi.org/10.2478/s11696-013-0311-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0311-2

Keywords

Navigation