Skip to main content

Advertisement

Log in

Spectral analysis of naringenin deprotonation in aqueous ethanol solutions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The deprotonation of 5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one (naringenin) was studied in aqueous solutions of ethanol and 0.1 mol L−1 sodium perchlorate at 25°C. The chemical species that contributed to deprotonation were evaluated together with their pure spectral characteristics and concentration profiles by some chemometric methods. The deprotonation constants assigned by pK 1, pK 2, and pK 3 were determined by multivariate curve analysis of spectral data at different pcH values. The pure spectral analysis concordant with the theoretical prediction of deprotonation constants indicates that the acidity of hydroxyl groups in naringenin decreases in the order: 7-OH, 4′-OH, 5-OH. The effects of the solvent on deprotonation were analysed in terms of the linear solvation energy relationships using the model of Kamlet, Abboud, and Taft (KAT). Multiple linear regressions were aimed towards correlating the deprotonation constants with the microscopic parameters containing hydrogen-bond acidity (α), dipolarity/polarisability (π*), and hydrogen-bond basicity (β). The most significant parameter was found to be the hydrogen-bond acidity of binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afanas’ev, I. B., Ostrachovitch, E. A., Abramova, N. E., & Korkina, L. G. (1995). Different antioxidant activities of bioflavonoid rutin in normal and ironoverloading rats. Biochemical Pharmacology, 50, 627–635. DOI: 10.1016/0006-2952(95)00173-w.

    Article  Google Scholar 

  • Agrawal, P. K., & Schneider, H. J. (1983). Deprotonation induced 13C NMR shifts in phenols and flavonoids. Tetrahedron Letters, 24, 177–180. DOI: 10.1016/s0040-4039(00)81359-3.

    Article  CAS  Google Scholar 

  • Airinei, A., Rusu, E., & Dorohoi, D. (2001). Solvent influence on the electronic absorption spectra of some azoaromatic compounds. Spectroscopy Letters, 34, 65–74. DOI: 10.1081/sl-100001452.

    Article  CAS  Google Scholar 

  • Alemán, C. (2000). Acid/base properties of flavonoids hydroxylated at positions 2 and 3: a novel quantum mechanical study in gas-phase and solution. Journal of Molecular Structure: THEOCHEM, 528, 65–73. DOI: 10.1016/s0166-1280(99)00407-8.

    Article  Google Scholar 

  • Anouar, E. H., Gierschner, J., Duroux, J. L., & Trouillas, P. (2012). UV/Visible spectra of natural polyphenols: A timedependent density functional theory study. Food Chemistry, 131, 79–89. DOI: 10.1016/j.foodchem.2011.08.034.

    Article  CAS  Google Scholar 

  • Beltrán, J. L., Codony, R., & Prat, M. D. (1993). Evaluation of stability constants from multi-wavelength absorbance data: program STAR. Analytica Chimica Acta, 276, 441–454. DOI: 10.1016/0003-2670(93)80415-h.

    Article  Google Scholar 

  • Billo, E. J. (2001). Excel for chemists: A comprehensive guide. Weinheim, Germany: Wiley.

    Book  Google Scholar 

  • Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical plant. Chichester, UK: Wiley.

    Google Scholar 

  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343–356. DOI: 10.1016/j.ijantimicag.2005.09.002.

    Article  CAS  Google Scholar 

  • Cushnie, T. P. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38, 99–107. DOI: 10.1016/j.ijantimicag.2011.02.014.

    Article  CAS  Google Scholar 

  • Elbergali, A., Nygren, J., & Kubista, M. (1999). An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta, 379, 143–158. DOI: 10.1016/s0003-2670(98)00640-0.

    Article  CAS  Google Scholar 

  • Farajtabar, A., Jaberi, F., & Gharib, F. (2001). Preferential salvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 213–220. DOI: 10.1016/j.saa.2011.08.020.

    Article  Google Scholar 

  • Farajtabar, A., & Gharib, F. (2010a). Solvent effect on protonation constants of salicylic acid in mixed aqueous organic solutions of DMSO. Monatshefte für Chemie — Chemical Monthly, 141, 381–386. DOI: 10.1007/s00706-010-0277-5.

    Article  CAS  Google Scholar 

  • Farjtabar, A., & Gharib, F. (2010b). Solvent effect on protonation constants of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin in different aqueous solutions of methanol and ethanol. Journal of Solution Chemistry, 39, 231–244. DOI: 10.1007/s10953-010-9496-y.

    Article  CAS  Google Scholar 

  • Favaro, G., Clementi, C., Romani, A., & Vickackaite, V. (2007). Acidichromism and ionochromism of luteolin and apigenin, the main components of the naturally occurring yellow weld: a spectrophotometric and fluorimetric study. Journal of Fluorescence, 17, 707–714. DOI: 10.1007/s10895-007-0222-0.

    Article  CAS  Google Scholar 

  • Fiorucci, S., Golebiowski, J., Cabrol-Bass, D., & Antonczak, S. (2007). DFT Study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes. Journal of Agricultural and Food Chemistry, 55, 903–911. DOI: 10.1021/jf061864s.

    Article  CAS  Google Scholar 

  • Gran, G. (1952). Determination of the equivalence point in potentiometric titrations. Part II. Analyst, 77, 661–671. DOI: 10.1039/an9527700661.

    Article  CAS  Google Scholar 

  • Harborne, J. B., & Baxter, H. (1999). The handbook of natural flavonoids. Chichester, UK: Wiley.

    Google Scholar 

  • Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504. DOI: 10.1016/s0031-9422(00)00235-1.

    Article  CAS  Google Scholar 

  • Hilal, S. H., Carreira, A., & Karikhoff, S. W. (1994). Estimation of chemical reactivity parameters and physical properties of organic molecules using SPARC. In P. Politzer & J. S. Murray (Eds.), Quantitative treatment of solute/solvent interactions. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Hilal, S. H., Karickhoff, S. W., & Carreira, L. A. (2004). Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds. QSAR & Combinatorial Science, 23, 709–720. DOI: 10.1002/qsar.200430866.

    Article  CAS  Google Scholar 

  • Jovanovic, S. V., Steenken, S., Tosic, M., Marjanovic, B., & Simic, M. G. (1994). Flavonoids as antioxidants. Journal of the American Chemical Society, 116, 4846–4851. DOI: 10.1021/ja00090a032.

    Article  CAS  Google Scholar 

  • Justino, G. C., & Vieira, A. J. S. C. (2010). Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution — a comparison and validation of semi-empirical methods. Journal of Molecular Modeling, 16, 863–876. DOI: 10.1007/s00894-009-0583-1.

    Article  CAS  Google Scholar 

  • Klein, E., Lukeš, V., & Ilčin, M. (2007). DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics, 336, 51–57. DOI: 10.1016/j.chemphys.2007.05.007.

    Article  CAS  Google Scholar 

  • Kron, I., Pudychova-Chovanova, Z., Velika, B., Guzy, J., & Perjesi, P. (2012). (E)-2-Benzylidenebenzocyclanones, part VIII: spectrophotometric determination of pKa values of some natural and synthetic chalcones and their cyclic analogues. Monatshefte für Chemie — Chemical Monthly, 143, 13–17. DOI: 10.1007/s00706-011-0633-0.

    Article  CAS  Google Scholar 

  • Lemańska, K., Szymusiak, H., Tyrakowska, B., Zieliński, R., Soffers, A. E. M. F., & Rietjens, I. M. C. M. (2001). The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology and Medicine, 31, 869–881. DOI: 10.1016/s0891-5849(01)00638-4.

    Article  Google Scholar 

  • Leopoldini, M., Pitarch, I. P., Russo, N., & Toscano, M. (2004). Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. Journal of Physical Chemistry A, 108, 92–96. DOI: 10.1021/jp035901j.

    Article  CAS  Google Scholar 

  • Leopoldini, M., Russo, N., & Toscano, M. (2006). Gas and liquid phase acidity of natural antioxidants. Journal of Agricultural and Food Chemistry, 54, 3078–3085. DOI: 10.1021/jf053180a.

    Article  CAS  Google Scholar 

  • Litwinienko, G., & Ingold, K. U. (2007). Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Accounts of Chemical Research, 40, 222–230. DOI: 10.1021/ar0682029.

    Article  CAS  Google Scholar 

  • Malinowski, E. R. (1991). Factor analysis in chemistry (2nd ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Marcus, Y. (1994). The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. Journal of the Chemical Society, Perkin Transactions, 2, 1751–1758. DOI: 10.1039/p29940001751.

    Google Scholar 

  • Mezzetti, A., Protti, S., Lapouge, C., & Cornard, J. P. (2011). Protic equilibria as the key factor of quercetin emission in solution. Relevance to biochemical and analytical studies. Physical Chemistry Chemical Physics, 13, 6858–6864. DOI: 10.1039/c0cp00714e.

    Article  CAS  Google Scholar 

  • Mielczarek, C. (2005). Acid-base properties of selected flavonoid glycosides. European Journal of Pharmaceutical Sciences, 25, 273–279. DOI: 10.1016/j.ejps.2005.03.002.

    Article  CAS  Google Scholar 

  • Mira, L., Fernandez, M. T., Santos, M., Rocha, R., Floręncio, M. H., & Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Research, 36, 1199–1208. DOI: 10.1080/1071576021000016463.

    Article  CAS  Google Scholar 

  • Musialik, M., Kuzmicz, R., Pawłowski, T. S., & Litwinienko, G. (2009). Acidity of hydroxyl groups: An overlooked influence on antiradical properties of flavonoids. Journal of Organic Chemistry, 74, 2699–2709. DOI: 10.1021/jo802716v.

    Article  CAS  Google Scholar 

  • Reichardt, C. (2004). Solvents and solvent effects in organic chemistry. Weinheim, Germany: Wiley.

    Google Scholar 

  • Richardson, G. A., El-Rafey, M. S., & Long, M. L. (1947). Flavones and flavone derivatives as antioxidants. Journal of Dairy Science, 30, 397–413. DOI: 10.3168/jds.s0022-0302(47)92364-3.

    Article  CAS  Google Scholar 

  • Rong, Y., Wang, Z. W., Wu, J. H., & Zhao, B. (2012). A theoretical study on cellular antioxidant activity of selected flavonoids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 235–239. DOI: 10.1016/j.saa.2012.03.008.

    Article  CAS  Google Scholar 

  • Ruela de Sousa, R. R., Souza Queiroz, K. C., Santos Souza, A. C., Gurgueira, S. A., Augusto, A. C., Miranda, M. A., Poppelenbosch, M. P., Ferreira, C. V., & Aoyama, H. (2007). Phosphoprotein levels, MAPK activities and NFKB expression are affected by fisetin. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 439–444. DOI: 10.1080/14756360601162063.

    Article  CAS  Google Scholar 

  • Şanli, S., Altun, Y., Şanli, N., Alsancak, G., & Beltran, J. L. (2009). Solvent effects on pK a values of some substituted sulfonamides in acetonitrile-water binary mixtures by the UVspectroscopy method. Journal of Chemical & Engineering Data, 54, 3014–3021. DOI: 10.1021/je9000813.

    Article  Google Scholar 

  • Schuier, M., Sies, H., Illek, B., & Fischer, H. (2005). Cocoarelated flavonoids inhibit CFTR-mediated chloride transport across T84 human colon epithelia. Journal of Nutrition, 135, 2320–2325.

    CAS  Google Scholar 

  • Serra, H., Mendes, T., Bronze, M. R., & Simplício, A. L. (2008). Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones. Bioorganic & Medicinal Chemistry, 16, 4009–4018. DOI: 10.1016/j.bmc.2008.01.028.

    Article  CAS  Google Scholar 

  • Tommasini, S., Calabrò, M. L., Raneri, D., Ficarra, P., & Ficarra, R. (2004). Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. Journal of Pharmaceutical and Biomedical Analysis, 36, 327–333. DOI: 10.1016/j.jpba.2004.06.013.

    Article  CAS  Google Scholar 

  • Vaganek, A., Rimarcik, J., Lukes, V., & Klein, E. (2012). On the energetics of homolytic and heterolytic OAH bond cleavage in flavonoids. Computational and Theoretical Chemistry, 991, 192–200. DOI: 10.1016/j.comptc.2012.04.014.

    Article  CAS  Google Scholar 

  • Webb, M. R., & Ebeler, S. E. (2004). Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity. Biochemical Journal, 384, 527–541. DOI: 10.1042/bj20040474.

    Article  CAS  Google Scholar 

  • Wilcox, L. J., Borradaile, N. M., & Huff, M. W. (1999). Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovascular Drug Reviews, 17, 160–178. DOI: 10.1111/j.1527-3466.1999.tb00011.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farajtabar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farajtabar, A., Gharib, F. Spectral analysis of naringenin deprotonation in aqueous ethanol solutions. Chem. Pap. 67, 538–545 (2013). https://doi.org/10.2478/s11696-013-0309-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0309-9

Keywords

Navigation