Skip to main content
Log in

Conducting polymer-silver composites

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Preparations of hybrid composites composed of two conducting components, a conducting polymer and silver, are reviewed. They are produced mainly by the oxidation of aniline or pyrrole with silver ions. In another approach, polyaniline or polypyrrole are used for the reduction of silver ions to metallic silver. Other synthetic approaches are also reviewed. Products of oxidation of aniline derivatives, including phenylenediamines, are considered. Morphology of both the conducting polymers and the silver in composites displays a rich variety. Conductivity of the composites seldom exceeds 1000 S cm−1 and seems to be controlled by percolation. Interfacial effects are also discussed. Potential applications of hybrid composites are outlined; they are likely to extend especially to conducting inks, printed electronics, noble-metal recovery, antimicrobial materials, catalysts, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzal, A. B., Akhtar, M. J., Nadeem, M., Ahmad, M., Hassan, M. M., Yasin, T., & Mehmood, M. (2009). Structural and electrical properties of polyaniline/silver nanocomposites. Journal of Physics D: Applied Physics, 42, 015411. DOI: 10.1088/0022-3727/42/1/015411.

    Article  CAS  Google Scholar 

  • Afzal, A. B., & Akhtar, M. J. (2010). Effect of inorganic silver nanoparticles on structural and electrical properties of polyaniline/PVC blends. Journal of Inorganic and Organometallic Polymers and Materials, 20, 783–792. DOI: 10.1007/s10904-010-9405-2.

    Article  CAS  Google Scholar 

  • Afzal, A. B., & Akhtar, M. J. (2011). Investigation of ageing effects on the electrical properties of polayniline/silver nanocomposites. Chinese Physics B, 20, 058102. DOI: 10.1088/1674-1056/20/5/058102.

    Article  CAS  Google Scholar 

  • Afzal, A. B., & Akhtar, M. J. (2012). Effects of silver nanoparticles on thermal properties of DBSA-doped polyaniline/PVC blends. Iranian Polymer Journal, 21, 489–496. DOI: 10.1007/s13726-012-0053-y.

    Article  CAS  Google Scholar 

  • Alam, F., Ansari, S. A., Khan, W., Khan, M. E., & Naqvi, A. H. (2012). Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Functional Materials Letters, 5, 1250026. DOI: 10.1142/s1793604712500269.

    Article  CAS  Google Scholar 

  • Alqudami, A., Annapoorni, S., Sen, P., & Rawat, R. S. (2007). The incorporation of silver nanoparticles into polypyrrole: Conductivity changes. Synthetic Metals, 157, 53–59. DOI: 10.1016/j.synthmet.2006.12.006.

    Article  CAS  Google Scholar 

  • Ansari, R., & Delavar, A. F. (2008). Sorption of silver ion from aqueous solutions using conducting electroactive polymers. Journal of the Iranian Chemical Society, 5, 657–668. DOI: 10.1007/bf03246147.

    Article  CAS  Google Scholar 

  • Atmeh, M., & Alcock-Earley, B. E. (2011). A conducting polymer/Ag nanoparticle composite as a nitrate sensor. Journal of Applied Electrochemistry, 41, 1341–1347. DOI: 10.1007/s10800-011-0354-4.

    Article  CAS  Google Scholar 

  • Au, K. M., Lu, Z. H., Matcher, S. J., & Armes, S. P. (2011). Polypyrrole nanoparticles: A potential optical coherence tomography contrast agent for cancer imaging. Advanced Materials, 23, 5792–5795. DOI: 10.1002/adma.201103190.

    Article  CAS  Google Scholar 

  • Ayad, M. M., & Zaki, E. (2009). Synthesis and characterization of silver-polypyrrole film composite. Applied Surface Science, 256, 787–791. DOI: 10.1016/j.apsusc.2009.08.060.

    Article  CAS  Google Scholar 

  • Ayad, M. M., Prastomo, N., Matsuda, A., & Stejskal, J. (2010). Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance. Synthetic Metals, 160, 42–46. DOI: 10.1016/j.synthmet.2009.09.030.

    Article  CAS  Google Scholar 

  • Baibarac, M., Mihut, L., Louarn, G., Mevellec, J. Y., Wery, J., Lefrant, S., & Baltog, I. (1999). Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. Journal of Raman Spectroscopy, 30, 1105–1113. DOI: 10.1002/(SICI)1097-4555(199912)30:12〈1105::AID-JRS507〉3.0.CO;2-3.

    Article  CAS  Google Scholar 

  • Barkade, S. S., Naik, J. B., & Sonawane, S. H. (2011). Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapour sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378, 94–98. DOI: 10.1016/j.colsurfa.2011.02. 002.

    Article  CAS  Google Scholar 

  • Bashyam, R., & Zelenay, P. (2006). A class of non-precious metal composite catalysts for fuel cells. Nature, 443, 63–66. DOI: 10.1038/nature05118.

    Article  CAS  Google Scholar 

  • Bedre, M. D., Basavaraja, S., Salwe, B. D., Shivakumar, V., Arunkumar, L., & Venkataraman, A. (2009). Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polymer Composites, 30, 1668–1677. DOI: 10.1002/pc.20740.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., Ćirić-Marjanović, G., & Sapurina, I. (2007a). Polymerization of aniline on polyaniline membranes. Journal of Physical Chemistry B, 111, 2440–2448. DOI: 10.1021/jp067370f.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007b). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331–2341. DOI: 10.1016/j.eurpolymj.2007.03.045.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Stejskal, J., Trchová, M., Sapurina, I., & Ćirić-Marjanović, G. (2009). The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer, 50, 50–56. DOI: 10.1016/j.polymer.2008.10.040.

    Article  CAS  Google Scholar 

  • Blinova, N. V., Bober, P., Hromádková, J., Trchová, M., Stejskal, J., & Prokeš, J. (2010). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International, 59, 437–446. DOI: 10.1002/pi.2718.

    Article  CAS  Google Scholar 

  • Bober, P., Stejskal, J., Trchová, M., Hromádková, J., & Prokeš, J. (2010a). Polyaniline-coated silver nanowires. Reactive & Functional Polymers, 70, 656–662. DOI: 10.1016/j.reactfunctpolym.2010.05.009.

    Article  CAS  Google Scholar 

  • Bober, P., Stejskal, J., Trchová, M., Prokeš, J., & Sapurina, I. (2010b). Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites. Macromolecules, 43, 10406–10413. DOI: 10.1021/ma101474j.

    Article  CAS  Google Scholar 

  • Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011a). Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 52, 5947–5952. DOI: 10.1016/j.polymer.2011.10.025.

    Article  CAS  Google Scholar 

  • Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011b). The preparation of conducting polyaniline-silver and poly (p-phenylenediamine)-silver nanocomposites in liquid and frozen reaction mixtures. Journal of Solid State Electrochemistry, 15, 2361–2368. DOI: 10.1007/s10008-011-1414-8.

    Article  CAS  Google Scholar 

  • Bober, P., Trchová, M., Prokeš, J., Varga, M., & Stejskal, J. (2011c). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta, 56, 3580–3585. DOI: 10.1016/j.electacta.2010.08.041.

    Article  CAS  Google Scholar 

  • Borthakur, L. J., Sharma, S., & Dolui, S. K. (2011). Studies on Ag/polypyrrole composite deposited on the surface of styrene-methyl acrylate copolymer microparticles and their electrical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 22, 949–958. DOI: 10.1007/s10854-010-0242-4.

    Article  CAS  Google Scholar 

  • Bouazza, S., Alonzo, V., & Hauchard, D. (2009). Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material. Synthetic Metals, 159, 1612–1619. DOI: 10.1016/j.synthmet.2009.04.025.

    Article  CAS  Google Scholar 

  • Cao, Y., Smith, P., & Heeger, A. J. (1993). Counter-ion induced processibility of conducting polyaniline. Synthetic Metals, 57, 3514–3519. DOI: 10.1016/0379-6779(93)90468-c.

    Article  CAS  Google Scholar 

  • Chang, S. J., Chen, K., Hua, Q., Ma, Y. S., & Huang, W. X. (2011). Evidence for the growth mechanism of silver nanocubes and nanowires. Journal of Physical Chemistry C, 115, 7979–7986. DOI: 10.1021/jp2010088.

    Article  CAS  Google Scholar 

  • Chang, G.H., Luo, Y. L., Lu, W. B., Qin, X.Y., Asiri, A.M., Al-Youbi, A. O., & Sun, X. P. (2012a). Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catalysis Science & Technology, 2, 800–806. DOI: 10.1039/c2cy00454b.

    Article  CAS  Google Scholar 

  • Chang, M. C., Kim, T. J., Park, H. W., Kang, M. J., Reichmanis, E., & Yoon, H. S. (2012b). Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Applied Materials & Interfaces, 4, 4357–4365. DOI: 10.1021/am3009967.

    Article  CAS  Google Scholar 

  • Chao, D. M., Cui, L., Zhang, J. F., Liu, X. C., Li, Y. X., Zhang, W. J., & Wang, C. (2009). Preparation of oligoaniline derivative/polyvinylpyrrolidone nanofibers containing silver nanoparticles. Synthetic Metals, 159, 537–540. DOI: 10.1016/j.synthmet.2008.11.013.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Garai, A., & Nandi, A. K. (2011). Mechanism of polypyrrole and silver nanorod formation in lauric acidcetyl trimethyl ammonium bromide coacervate gel template: Physical and conductivity properties. Synthetic Metals, 161, 62–71. DOI: 10.1016/j.synthmet.2010.10.035.

    Article  CAS  Google Scholar 

  • Chen, A. H., Wang, H. Q., & Li, X. Y. (2005a). One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications, 2005, 1863–1864. DOI: 10.1039/b417744d.

    Article  CAS  Google Scholar 

  • Chen, A. H., Kamata, K., Nakagawa, M., Iyoda, T., Wang, H. Q., & Li, X. Y. (2005b). Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). Journal of Physical Chemistry B, 109, 18283–18288. DOI: 10.1021/jp053247x.

    Article  CAS  Google Scholar 

  • Chen, A. H., Xie, H. X., Wang, H. Q., Li, H. Y., & Li, X. Y. (2006). Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals, 156, 346–350. DOI: 10.1016/j.synthmet.2005.12.017.

    Article  CAS  Google Scholar 

  • Chen, R., Zhao, S. Z., Han, G. Y., & Dong, J. H. (2008). Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Materials Letters, 62, 4031–4034. DOI: 10.1016/j.matlet.2008.05.054.

    Article  CAS  Google Scholar 

  • Chen, H. M., & Liu, R. S. (2011a). Architecture of metallic nanostructures: Synthesis strategy and specific applications. Journal of Physical Chemistry C, 115, 3513–3527. DOI: 10.1021/jp108403r.

    Article  CAS  Google Scholar 

  • Chen, F., & Liu, P. (2011b). Conducting polyaniline nanoparticles and their dispersion for waterborn corrosion protection coating. ACS Applied Materials & Interfaces, 3, 2694–2702. DOI: 10.1021/am200488m.

    Article  CAS  Google Scholar 

  • Cheng, D. M., Xia, H. B., & Cahn, H. S. O. (2006). Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates. Nanotechnology, 17, 1661–1667. DOI: 10.1088/0957-4484/17/6/021.

    Article  CAS  Google Scholar 

  • Cheng, Q. L., Pavlinek, V., He, Y., Yan, Y. F., Li, C. Z., & Saha, P. (2011). Template-free synthesis of hollow poly(oanisidine) microspheres and their electrorheological characteristics. Smart Materials and Structures, 20, 065014. DOI: 10.1088/0964-1726/20/6/065014.

    Article  CAS  Google Scholar 

  • Chi, K. W., Song, Y. H., Cha, E. H., Jin, S. H., & Lee, C. W. (2010). Reversible colorimetric changes of a nanoporous polyaniline conducting particles system for sensing metal ions, Synthetic Metals, 160, 946–949. DOI: 10.1016/j.synthmet.2010.02.005.

    Article  CAS  Google Scholar 

  • Choi, M. J., & Jang, J. S. (2008). Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. Journal of Colloid and Interface Science, 325, 287–289. DOI: 10.1016/j.jcis.2008.05.047.

    Article  CAS  Google Scholar 

  • Choudhury, A. (2009). Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors and Actuators B: Chemical, 138, 318–325. DOI: 10.1016/j.snb.2009.01.019.

    Article  CAS  Google Scholar 

  • Choudhury, A., Kar, P., Mukherjee, M., & Adhikari, B. (2009). Polyaniline/silver nanocomposite based acetone vapour sensor. Sensor Letters, 7, 592–598. DOI: 10.1166/sl.2009.1115.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Trchová, M., Konyushenko, E. N., Holler, P., & Stejskal, J. (2008). Chemical oxidative polymerization of aminodiphenylamines. Journal of Physical Chemistry B, 112, 6976–6987. DOI: 10.1021/jp710963e.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Marjanović, B., Bober, P., Rozlívková, Z., Stejskal, J., Trchová, M., & Prokeš, J. (2011). The oxidative polymerization of p-phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3387–3403. DOI: 10.1002/pola.24775.

    Article  CAS  Google Scholar 

  • Correa, C. M., Faez, R., Bizeto, M. A., & Camilo, F. F. (2012). One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid. RSC Advances, 2, 3088–3093. DOI: 10.1039/c2ra00992g.

    Article  CAS  Google Scholar 

  • Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N., Jr., & Zucolotto, V. (2009). Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 24, 3073–3077. DOI: 10.1016/j.bios.2009.03. 026.

    Article  CAS  Google Scholar 

  • Dallas, P., Niarchos, D., Vrbanic, D., Boukos, N., Pejovnik, S., Trapalis, C., & Petridis, D. (2007). Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites. Polymer, 48, 2007–2013. DOI: 10.1016/j.polymer.2007.01.058.

    Article  CAS  Google Scholar 

  • Dawn, A., & Nandi, A. K. (2006). Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite. Journal of Physical Chemistry B, 110, 18291–18298. DOI: 10.1021/jp063269z.

    Article  CAS  Google Scholar 

  • Dawn, A., Mukherjee, P., & Nandi, A. K. (2007). Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer. Langmuir, 23, 5231–5237. DOI: 10.1021/la063229m.

    Article  CAS  Google Scholar 

  • de Azevedo, W. M., de Barros, R. A., & da Silva, E. F. (2008a). Conductive polymer preparation under extreme or non-classical conditions. Journal of Materials Science, 43, 1400–1405. DOI: 10.1007/s10853-007-2278-2.

    Article  CAS  Google Scholar 

  • de Azevedo, W. M., de Mattos, I. L., Navarro, M., & da Silva, E. F., Jr. (2008b). Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite. Applied Surface Science, 255, 770–774. DOI: 10.1016/j.apsusc.2008.07.039.

    Article  CAS  Google Scholar 

  • de Barros, R. A., Martins, C. R., & de Azevedo, W. M. (2005). Writing with conducting polymer. Synthetic Metals, 155, 35–38. DOI: 10.1016/j.synthmet.2005.05.014.

    Article  CAS  Google Scholar 

  • de Barros, R. A., & de Azevedo, W. M. (2008). Polyaniline/silver nanocomposite preparation under extreme or nonclassical conditions. Synthetic Metals, 158, 922–926. DOI: 10.1016/j.synthmet.2008.06.021.

    Article  CAS  Google Scholar 

  • de Barros, R. A., Areias, M. C. C., & de Azevedo, W. M. (2010). Conducting polymer photopolymerization mechanism: The role of nitrate anions (NO 3 ). Synthetic Metals, 160, 61–64. DOI: 10.1016/j.synthmet.2009.09.033.

    Article  CAS  Google Scholar 

  • de Barros, R. A., & de Azevedo, W. M. (2010). Solvent coassisted ultrasound technique for the preparation of silver nanowire/polyaniline composite. Synthetic Metals, 160, 1387–1391. DOI: 10.1016/j.synthmet.2010.04.006.

    Article  CAS  Google Scholar 

  • Della Pina, C., Falletta, E., & Rossi, M. (2011). Conductive materials by metal catalyzed polymerization. Catalysis Today, 160, 11–27. DOI: 10.1016/j.cattod.2010.05.023.

    Article  CAS  Google Scholar 

  • D’Eramo, F., Silber, J. J., Arévalo, A. H., & Sereno, L. E. (2000). Electrochemical detection of silver ions and the study of metal-polymer interactions on a polybenzidine film electrode. Journal of Electroanalytical Chemistry, 494, 60–68. DOI: 10.1016/s0022-0728(00)00329-6.

    Article  Google Scholar 

  • Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112.

    Article  CAS  Google Scholar 

  • Dispenza, C., Sabatino, M. A., Chmielewska, D., LoPresti, C., & Battaglia, G. (2012). Inherently fluorescent polyaniline nanoparticles in a dynamic landscape. Reactive & Functional Polymers, 72, 185–197. DOI: 10.1016/j.reactfunctpolym.2012.01.001.

    Article  CAS  Google Scholar 

  • Drury, A., Chaure, S., Kröll, M., Nicolosi, V., Chaure, N., & Blau, W. J. (2007). Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chemistry of Materials, 19, 4252–4258. DOI: 10.1021/cm071102s.

    Article  CAS  Google Scholar 

  • Du, J. M., Liu, Z. M., Han, B. X., Li, Z. H., Zhang, J. L., & Huang, Y. (2005). One-pot synthesis of macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous and Mesoporous Materials, 84, 254–260. DOI: 10.1016/j.micromeso.2005.05.036.

    Article  CAS  Google Scholar 

  • Efros, A. L., & Shklovski, B. I. (1976). Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Physica Status Solidi B, 76, 475–485. DOI: 10.1002/pssb.2220760205.

    Article  CAS  Google Scholar 

  • Feng, X. M. (2010). Synthesis of Ag/polypyrrole core-shell nanospheres by a seeding method. Chinese Journal of Chemistry, 28, 1359–1362. DOI: 10.1002/cjoc.201090232.

    Article  CAS  Google Scholar 

  • Feng, X. M., Huang, H. P., Ye, Q. Q., Zhu, J. J., & Hou, W. H. (2007a). Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles. Journal of Physical Chemistry C, 111, 8463–8468. DOI: 10.1021/jp071140z.

    Article  CAS  Google Scholar 

  • Feng, X. M., Sun, Z. Z., Hou, W. H., & Zhu, J. J. (2007b). Synthesis of functional polypyrrole/Prussian blue and polypyrrole/Ag composite microtubes by using a reactive template. Nanotechnology, 18, 195603. DOI: 10.1088/0957-4484/18/19/195603.

    Article  CAS  Google Scholar 

  • Feng, X. M., Huang, H. P., Xu, L., Zhu, J. J., & Hou, W. H. (2008). Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan. Journal of Nanoscience and Nanotechnology, 8, 443–447. DOI: 10.1166/jnn.2008.028.

    Article  CAS  Google Scholar 

  • Firoz Babu, K., Dhandapani, P., Maruthamuthu, S., & Anbu Kulandainathan, M. (2012). One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90, 1557–1563. DOI: 10.1016/j.carbpol.2012.07.030.

    Article  CAS  Google Scholar 

  • Fujii, S., Nishimura, Y., Aichi, A., Matsuzawa, S., Nakamura, Y., Akamatsu, K., & Nawafune, H. (2010). Facile one-step route to polyaniline-silver nanocomposite particles and their application as a colored particulate emulsifier. Synthetic Metals, 160, 1433–1437. DOI: 10.1016/j.synthmet.2010.04.024.

    Article  CAS  Google Scholar 

  • Fuke, M. V., Vijayan, A., Kanitkar, P., & Aiyer, R. C. (2009a). Optical humidity sensing characteristics of Ag-polyaniline nanocomposite. IEEE Sensors Journal, 9, 648–653. DOI: 10.1109/jsen.2009.2020662.

    Article  CAS  Google Scholar 

  • Fuke, M. V., Vijayan, A., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2009b). Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor. Journal of Materials Science: Materials in Electronics, 20, 695–703. DOI: 10.1007/s10854-008-9787-x.

    Article  CAS  Google Scholar 

  • Fuke, M. V., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2010). Effect of particle size variation of Ag nanoparticles in polyaniline composite on humidity sensing. Talanta, 81, 320–326. DOI: 10.1016/j.talanta.2009.12.003.

    Article  CAS  Google Scholar 

  • Gao, Y., Shan, D., Cao, F., Gong, J., Li, X., Ma, H. Y., Su, Z. M., & Qu, L. Y. (2009). Silver/polyaniline composite nanotubes: One-step synthesis and electrocatalytic activity of neurotransmitter dopamine. Journal of Physical Chemistry C, 113, 15175–15181. DOI: 10.1021/jp904788d.

    Article  CAS  Google Scholar 

  • Gao, L., Lv, S., & Xing, S. X. (2012). Facile route to achieve silver@ polyaniline nanofibers. Synthetic Metals, 162, 948–952. DOI: 10.1016/j.synthmet.2012.04.026.

    Article  CAS  Google Scholar 

  • Garai, A., Chatterjee, S., & Nandi, A. K. (2010). Nanocomposites of silver nanoparticle and dinonylnaphthalene disulfonic acid-doped thermoreversible polyaniline gel. Polymer Engineering & Science, 50, 446–454. DOI: 10.1002/pen.21545.

    Article  CAS  Google Scholar 

  • Ghorbani, M., Lashkenari, M. S., & Eisazadeh, H. (2011). Synthesis and thermal stability studies of polyaniline/silver nanocomposite based on reduction of silver ions using polyaniline. High Performance Polymers, 23, 513–517. DOI: 10.1177/0954008311419049.

    Article  CAS  Google Scholar 

  • Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum of antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7, 4204–4209. DOI: 10.1016/j.actbio.2011.07.018.

    Article  CAS  Google Scholar 

  • Gniadek, M., Bak, E., Stojek, Z., & Donten, M. (2010a). Metalion driven synthesis of polyaniline composite doped with metallic nanocrystals at the boudary of two immiscible liquids. Journal of Solid State Electrochemistry, 14, 1303–1310. DOI: 10.1007/s10008-009-0939-6.

    Article  CAS  Google Scholar 

  • Gniadek, M., Donten, M., & Stojek Z. (2010b). Electroless formation of conductive polymer-metal nanostructured composites at boundry of two immiscible solvents. Morphology and properties. Electrochimica Acta, 55, 7737–7744. DOI: 10.1016/j.electacta.2009.10.064.

    Article  CAS  Google Scholar 

  • Grinou, A., Bak, H. S., Yun, Y. S., & Jin, H. J. (2012). Polyaniline/silver nanoparticle-doped multiwalled carbon nanotube composites. Journal of Dispersion Science and Technology, 33, 750–755. DOI: 10.1080/01932691.2011.567862.

    Article  CAS  Google Scholar 

  • Guo, S. J., & Wang, E. K. (2008). One pot, facile synthesis of hierarchical silver nanostrip assembling architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 673–678. DOI: 10.1016/j.colsurfa.2007.12.002.

    Article  CAS  Google Scholar 

  • Gupta, K., Jana, P. C., & Meikap, A. K. (2010). Optical and electrical properties of polyaniline-silver nanocomposite. Synthetic Metals, 160, 1566–1573. DOI: 10.1016/j.synthmet. 2010.05.026.

    Article  CAS  Google Scholar 

  • Han, J., Fang, P., Jiang, W. J., Li, L., & Guo, R. (2012). Ag-Nanoparticle-loaded mesoporous silica: Spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir, 28, 4768–4775. DOI: 10.1021/la204503b.

    Article  CAS  Google Scholar 

  • He, J. J., Han, X. J., Yan, J., Kang, L. L., Zhang, B., Du, Y. C., Dong, C. K., Wang, H. L., & Xu, P. (2012a). Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm, 14, 4952–4954. DOI: 10.1039/c2ce25257k.

    Article  CAS  Google Scholar 

  • He, Z. W., Lü, Q. F., & Zhang, J. Y. (2012b). Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability. ACS Applied Materials & Interfaces, 4, 369–374. DOI: 10.1021/am201447s.

    Article  CAS  Google Scholar 

  • Hosseini, M., & Momeni, M. M. (2010). Silver nanoparticles dispersed in polyaniline matrix coated on titanium substrate as a novel electrode for electro-oxidation of hydrazine. Journal of Materials Science, 45, 3304–3310. DOI: 10.1007/s10853-010-4347-1.

    Article  CAS  Google Scholar 

  • Huang, M. R., Li, X. G., & Li, S. X. (2005). The synthesis of polydiaminonaphthalene and its highly reactive adsorption for heavy metal ions. Progress in Chemistry, 17, 299–309.

    CAS  Google Scholar 

  • Huang, L. M., Huang, G. C., & Wen, T. C. (2006a). Role of anions in the polymerization of 2,5-dimethylaniline in the presence of poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 6624–6632. DOI: 10.1002/pola.21745.

    Article  CAS  Google Scholar 

  • Huang, L. M., Tsai, C. C., Wen, T. C., & Gopalan, A. (2006b). Simultaneous synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 3843–3852. DOI: 10.1002/pola.21479.

    Article  CAS  Google Scholar 

  • Huang, L. M., & Wen, T. C. (2007). One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Materials Science and Engineering A, 445–446, 7–13. DOI: 10.1016/j.msea.2006.05.121.

    Article  CAS  Google Scholar 

  • Huang, L. M., Liao, W. H., Ling, H. C., & Wen, T. C. (2009). Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles. Materials Chemistry and Physics, 116, 474–478. DOI: 10.1016/j.matchemphys.2009.04.035.

    Article  CAS  Google Scholar 

  • Huang, Z. H., Shi, L., Zhu, Q. R., Zou, J. T., & Chen, T. (2010). Fabrication of polyaniline/silver nanocomposite under γ-ray irradiation. Chinese Journal of Chemical Physics, 23, 701–706. DOI: 10.1088/1674-0068/23/06/701-706.

    Article  CAS  Google Scholar 

  • Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012a). Biocompatibility of polyaniline. Synthetic Metals, 162, 722–727. DOI: 10.1016/j.synthmet.2012.02.024.

    Article  CAS  Google Scholar 

  • Humpoliček, P., Kašpárková, Z., & Ševčíkověká, P. (2012b). Proliferace buněk na vodivém polymeru, polyanilinu. Chemické Listy, 106, 380–383. (in Czech)

    Google Scholar 

  • Ihalainen, P., Määttänen, A., Järnström, J., Tobjörk, D., Österbacka, R., & Peltonen, J. (2012). Influence of surface properties of coated papers on printed electronics. Industrial & Engineering Chemistry Research, 51, 6025–6036. DOI: 10.1021/ie202807v.

    Article  CAS  Google Scholar 

  • Ijeri, V. S., Nair, J. R., Gerbaldi, C., Gonnelli, R. S., Bodoardo, S., & Bongiovanni, R. M. (2010). An elegant and facile single-step UV-curing approach to surface nano-silvering of polymer composites. Soft Matter, 6, 4666–4668. DOI: 10.1039/c0sm00530d.

    Article  CAS  Google Scholar 

  • Ivanov, S., & Tsakova, V. (2005). Electroless versus electrodriven deposition of silver crystals in polyaniline. Role of silver anion complexes. Electrochimica Acta, 50, 5616–5623. DOI: 10.1016/j.electacta.2005.03.040.

    Article  CAS  Google Scholar 

  • Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010a). Effect of Ag+ on the morphologies and properties of polyaniline. Rare Metal Materials and Engineering, 39(Supplement 1), 538–543.

    Google Scholar 

  • Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010b). One-step synthesis of polyaniline nanofibers decorated with silver. Journal of Applied Polymer Science, 115, 26–31. DOI: 10.1002/app.30373.

    Article  CAS  Google Scholar 

  • Jia, Q. M., Shan, S. Y., Jiang, L. H., Wang, Y. M., & Li, D. (2012). Synergetic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566. DOI: 10.1002/app.36257.

    Article  CAS  Google Scholar 

  • Jiménez, P., Castell, P., Sainz, R., Ansón, A., Martínez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. Journal of Physical Chemistry B, 114, 1579–1585. DOI: 10.1021/jp909093e.

    Article  CAS  Google Scholar 

  • Jing, S. G., Xing, S. X., Yu, L. X., Wu, Y., & Zhao, C. (2007a). Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 2794–2797. DOI: 10.1016/j.matlet.2006.10.032.

    Article  CAS  Google Scholar 

  • Jing, S. G., Xing, S. X., Yu, L. X., & Zhao, C. (2007b). Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 4528–4530. DOI: 10.1016/j.matlet.2007.02.045.

    Article  CAS  Google Scholar 

  • Joo, J., & Lee, C. Y. (2000). High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. Journal of Applied Physics, 88, 513–518. DOI: 10.1063/1.373688.

    Article  CAS  Google Scholar 

  • Jung, Y. J., Govindaiah, P., Choi, S. W., Cheong, I. W., & Kim, J. H. (2011). Morphology and conducting property of Ag/poly(pyrrole) composite nanoparticles: Effect of polymeric stabilizers. Synthetic Metals, 161, 1991–1995. DOI: 10.1016/j.synthmet.2011.07.009.

    Article  CAS  Google Scholar 

  • Kabir, L., Mandal, A. R., & Mandal, S. K. (2008). Humiditysensing properties of conducting polypyrrole-silver nanocomposites. Journal of Experimental Nanoscience, 3, 297–305. DOI: 10.1080/17458080802512494.

    Article  CAS  Google Scholar 

  • Kang, Y. O., Choi, S. H., Gopalan, A., Lee, K. P., Kang, H. D., & Song, Y. S. (2006). Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. Journal of Non-Crystalline Solids, 352, 463–468. DOI: 10.1016/j.jnoncrysol.2006.01.043.

    Article  CAS  Google Scholar 

  • Kanwal, F., Ishaq, S., & Jamil, T. (2009). Synthesis and characterization of silver hexacyanoferrate (II)/polyaniline composites. Journal of the Chemical Society of Pakistan, 31, 907–910.

    CAS  Google Scholar 

  • Kar, P., Pradhan, N. C., & Adhikari, B. (2011). Doping of processable conducting poly(m-aminophenol) with silver nanoparticles. Polymers for Advanced Technologies, 22, 1060–1066. DOI: 10.1002/pat.1622.

    Article  CAS  Google Scholar 

  • Karim, M. R., Lim, K. T., Lee, C. J., Bhuiyan, M. T. I., Kim, H. J., Park, L. S., & Lee, M. S. (2007). Synthesis of coreshell silver-polyaniline nanocomposites by gamma radiolysis method. Journal of Polymer Science, Part A: Polymer Chemistry, 45, 5741–5747. DOI: 10.1002/pola.22323.

    Article  CAS  Google Scholar 

  • Karim, M. R., Yeum, J. H., Lee, M. Y., Lee, M. S., & Lim, K. T. (2009). UV-curing synthesis of sulfonated polyanilinesilver nanocomposites by an in situ reduction method. Polymers for Advanced Technologies, 20, 639–644. DOI: 10.1002/pat.1317.

    Article  CAS  Google Scholar 

  • Kate, K. H., Damkale, S. R., Khanna, P. K., & Jain, G. H. (2011). Nano-silver mediated polymerization of pyrrole: Syn thesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. Journal of Nanoscience and Nanotechnology, 11, 7863–7869. DOI: 10.1166/jnn.2011.4708.

    Article  CAS  Google Scholar 

  • Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 107, 668–677. DOI: 10.1021/jp026731y.

    Article  CAS  Google Scholar 

  • Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 35, 5571–5577. DOI: 10.1002/ejic.200700608.

    Article  CAS  Google Scholar 

  • Khanna, P. K., Singh, N., Charan, S., & Viswanath, A. K. (2005). Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics, 92, 214–219. DOI: 10.1016/j.matchemphys.2005.01.011.

    Article  CAS  Google Scholar 

  • Kim, K. S., Kim, I. J., & Park, S. J. (2010a). Influence of Ag doped graphene on electrochemical behaviours and specific capacitance of polypyrrole-based nanocomposites. Synthetic Metals, 160, 2355–2360. DOI: 10.1016/j.synthmet.2010.09.011.

    Article  CAS  Google Scholar 

  • Kim, H. J., Park, S. H., & Park, H. J. (2010b). Synthesis of a new electrically conducting nanosized Ag-polyaniline-silica complex using γ-radiolysis and its biosensing applications. Radiation Physics and Chemistry, 79, 894–899. DOI: 10.1016/j.radphyschem.2010.02.005.

    Article  CAS  Google Scholar 

  • Kim, K. S., & Park, S. J. (2011). Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. Journal of Solid State Electrochemistry, 184, 2724–2730. DOI: 10.1016/j.jssc.2011.08.010.

    Article  CAS  Google Scholar 

  • Kim, H. J., Park, S. H., & Park, H. J. (2011). Hydrogen peroxide sensor based on electrically conducting nanosized Agpolyaniline-silica complex. Sensor Letters, 9, 59–63. DOI: 10.1166/sl.2011.1419.

    Article  CAS  Google Scholar 

  • Kim, H. J., Choi, S. H., & Park, H. J. (2012). Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties. Radiation Physics and Chemistry, 81, 1612–1620. DOI: 10.1016/j.radphyschem.2012.04.013.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J. Prokeš, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008a). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes contaning nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Stejskal, J., Trchová, M., Blinova, N. V., & Holler, P. (2008b). Polymerization of aniline in ice. Synthetic Metals, 158, 927–933. DOI: 10.1016/j.synthmet.2008.06.015.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z.

    Article  CAS  Google Scholar 

  • Kovałchuk, E. P., Ogenko, V. M., Reshetnyak, O. V., Pereviznyk, O. B., Davydenko, N., & Marchuk, I. E. (2010). Surface modification of silver microparticles with 4-thioaniline. Electrochimica Acta, 55, 5154–5162. DOI: 10.1016/j. electacta.2010.04.023.

    Article  CAS  Google Scholar 

  • Krishna, J. B. M., Abhaya, S., Amarendra, G., Sundar, C. S., Saha, A., & Ghosh, B. (2008). Positron beam studies on polyaniline and Ag-coated polyaniline. Applied Surface Science, 255, 248–250. DOI:10.1016/j.apsusc.2008.05.189.

    Article  CAS  Google Scholar 

  • Křivka, I., Prokeš, J., Tobolková, E., & Stejskal, J. (1999). Application of percolation concepts to electrical conductivity of polyaniline-inorganic salt composites. Journal of Materials Chemistry, 9, 2425–2428. DOI: 10.1039/a904687i.

    Article  Google Scholar 

  • Křížko, E. N., Trchová, M., & Stejskal, J. (2011). NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 60, 1296–1302. DOI: 10.1002/pi.3079.

    Google Scholar 

  • Krutyakov, Y. A., Kudrinsky, A. A., Olenin, A. Y., & Lisichkin, G. V. (2010). Synthesis of highly stable silver colloids stabilized with water soluble sulfonated polyaniline. Applied Surface Science, 256, 7037–7042. DOI: 10.1016/j.apsusc.2010. 05.020.

    Article  CAS  Google Scholar 

  • Lee, C. Y., Song, H. G., Jang, K. S., Oh, E. J., Epstein, A. J., & Joo, J. (1999). Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synthetic Metals, 102, 1346–1349. DOI: 10.1016/s0379-6779(98)00234-3.

    Article  CAS  Google Scholar 

  • Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., Kim, M. S., Lee, J. Y., Jeong, S. H., Byun, S. W., Zang, D. S., & Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13, 577–583. DOI: 10.1002/pat227.

    Article  CAS  Google Scholar 

  • Lee, H. T., & Liu, Y. C. (2005). Catalytic electrooxidation pathway for the polymerization of polypyrrole in the presence of ultrafine silver nanoparticles. Polymer, 46, 10727–10732. DOI: 10.1016/j.polymer.2005.09.031.

    Article  CAS  Google Scholar 

  • Lee, K., Cho, S., Sung, H. P., Heeger, A. J., Lee, C. W., & Lee, S. H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705.

    Article  CAS  Google Scholar 

  • Lee, C. W., Jin, S. H., Yoon, K. S., Jeong, H. M., & Chi, K. W. (2009). Efficient oxidation of hydroquinone and alcohols by tailor-made solid polyaniline catalyst. Tetrahedron Letters, 50, 559–561. DOI: 10.1016/j.tetlet.2008.11.062.

    Article  CAS  Google Scholar 

  • Lee, Y. J., Kim, E. H., Kim, K. J., Lee, B. H., & Choe, S. J. (2012). Polyaniline effect on the conductivity of the PMMA/Ag hybrid composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 195–202. DOI: 10.1016/j.colsurfa.2011.12.071.

    Article  CAS  Google Scholar 

  • Leyva, M. E., Garcia, F. G., Alencar de Queiroz, A. A., & Soares, D. A. W. (2011). Electrical properties of the DGEBA/PANI-Ag composites. Journal of Materials Science: Materials in Electronics, 22, 376–383. DOI: 10.1007/s10854-010-0146-3.

    Article  CAS  Google Scholar 

  • Li, X. G., Liu, R., & Huang, M. R. (2005). Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chemistry of Materials, 17, 5411–5419. DOI: 10.1021/cm050813s.

    Article  CAS  Google Scholar 

  • Li, W. G., Jia, Q. X., & Wang, H. L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032.

    Article  CAS  Google Scholar 

  • Li, J., Tang, H. Q., Zhang, A. Q., Shen, X. T., & Zhu, L. H. (2007). A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromolecular Rapid Communications, 28, 740–745: DOI: 10.1002/marc.200600810.

    Article  CAS  Google Scholar 

  • Li, X., Gao, Y., Gong, J., Zhang, L., & Qu, L. Y. (2009a). Polyaniline/Ag composite nanotubes prepared through UV rays irradiation via fiber template approach and their NH3 gas sensitivity. Journal of Physical Chemistry C, 113, 69–73. DOI: 10.1021/jp807535v.

    Article  CAS  Google Scholar 

  • Li, X., Gao, Y., Liu, F. H., Gong, J., & Qu, L. Y. (2009b). Synthesis of polyaniline/Ag composite nanospheres through UV rays irradiation method. Materials Letters, 63, 467–469. DOI: 10.1016/j.matlet.2008.11.027.

    Article  CAS  Google Scholar 

  • Li, X. G., Ma, X. L., Sun, J., & Huang, M. R. (2009c). Powerful reactive sorption of silver(I) and mercury(II) onto poly (o-phenylenediamine) microparticles. Langmuir, 25, 1675–1684. DOI: 10.1021/la802410p.

    Article  CAS  Google Scholar 

  • Li, B., Xu, Y. L., Chen, J., Chen, G. R., Zhao, C. J., Qian, X. Z., & Wang, M. (2009d). Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Applied Surface Science, 256, 235–238. DOI: 10.1016/j.apsusc.2009.08.006.

    Article  CAS  Google Scholar 

  • Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000506.

    Article  CAS  Google Scholar 

  • Li, Z. H., & Wang, Y. W. (2010). Characterization of polyaniline/Ag nanocomposites using H2O2 and ultrasound radiation for enhancing rate. Polymer Composites, 31, 1662–1668. DOI: 10.1002/pc.20956.

    Article  CAS  Google Scholar 

  • Li, B. T., Tang, L. M., Chen, K., Xia, Y., & Jin, X. (2011). Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires. Chinese Chemical Letters, 22, 123–126. DOI: 10.1016/j.cclet.2010.06.034.

    Article  CAS  Google Scholar 

  • Li, Z. F., Blum, F. D., Bertino, M. F., & Kim, C. S. (2012a). Amplified response and enhanced selectivity of metal-PANI fiber composite based vapor sensors. Sensors and Actuators B: Chemical, 161, 390–395. DOI: 10.1016/j.sab.2011.10.049.

    Article  CAS  Google Scholar 

  • Li, Z. H., Lin, W., Lu, J. T., Laven, J., & Foyet, A. (2012b). Reversed micelle synthesis of Ag/polyaniline nanocomposites via an in situ ultraviolet photo-redox mechanism. Polymer Composites, 33, 451–458. DOI: 10.1002/pc.21211.

    Article  CAS  Google Scholar 

  • Liang, X. X., Sun, M. X., Li, L. C., Qiao, R., Chen, K., Xiao, Q. S., & Xu, F. (2012). Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Transactions, 41, 2804–2811. DOI: 10.1039/c2dt11823h.

    Article  CAS  Google Scholar 

  • Liao, F., Wang, Z. F., & Hu, X. Q. (2011a). Shape-controllable synthesis of dendritic silver nanostructures at room temperature. Colloid Journal, 73, 504–508. DOI: 10.1134/s1061933 x11040053.

    Article  CAS  Google Scholar 

  • Liao, F., Wang, Z. F., & Hu, X. Q. (2011b). Growth of different morphologies of silver submicrostructures: The effect of concentrations and pH. Ionics, 17, 177–182. DOI: 10.1007/s11581-010-0499-x.

    Article  CAS  Google Scholar 

  • Liao, F., Wang, Z. F., & Sun, X. P. (2012). A novel method self-assemle silver nanowires at room temperature. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42, 325–328. DOI: 10.1080/15533174.2011.610767.

    Article  CAS  Google Scholar 

  • Lim, C. W., Song, K., & Kim, S. H. (2012). Synthesis of PPy/silica nanocomposites with cratered surfaces and their application in heavy metal extraction. Journal of Industrial and Engineering Chemistry, 18, 24–28. DOI: 10.1016/j.jiec.2011.11.115.

    Article  CAS  Google Scholar 

  • Liu, Z. C., Su, Y., & Varahramyan, K. (2005). Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 478, 275–279. DOI: 10.1016/j.tsf.2004.11.077.

    Article  CAS  Google Scholar 

  • Luo, C. H., Peng, H., Zhang, L. J., Lu, G. L., Wang, Y. T., & Travas-Sejdic, J. (2011). Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules, 44, 6899–6907. DOI: 10.1021/ma201350m.

    Article  CAS  Google Scholar 

  • Lyutov, V., & Tsakova, V. (2011). Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. Journal of Solid State Electrochemistry, 15, 2553–2561. DOI: 10.1007/s10008-011-1451-3.

    Article  CAS  Google Scholar 

  • Mack, N. H., Bailey, J. A., Doorn, S. K., Chen, C. A., Gau, H. M., Xu, P., Williams, D. J., Akhadov, E. A., & Wang, H. L. (2011). Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. Langmuir, 27, 4979–4985. DOI: 10.1021/la103644j.

    Article  CAS  Google Scholar 

  • Mahmoudian, M. R., Alias, Y., Basirun, W. J., & Ebadi, M. (2012). Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochimica Acta, 72, 46–52. DOI: 10.1016/j.electacta.2012.03.144.

    Article  CAS  Google Scholar 

  • Mai, L. Q., Xu, X., Han, C. H., Luo, Y. Z., Xu, L., Wu, Y. A., & Zhao, Y. L. (2011). Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Letters, 11, 4992–4996. DOI: 10.1021/nl202943b.

    Article  CAS  Google Scholar 

  • Manesh, K. M., Gopalan, A. I., Lee, K. P., & Shanmugasundaram, K. (2010). Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergetic influence for catalysis. Catalysis Communications, 11, 913–918. DOI: 10.1016/j.catcom.2010.03.013.

    Article  CAS  Google Scholar 

  • Manivel, A., & Anandan, S. (2011). Silver nanoparticles embedded phosphomolybdate-polyaniline hybrid electrode for electrocatalytic reduction of H2O2. Journal of Solid State Electrochemistry, 15, 153–160. DOI: 10.1007/s10008-010-1080-2.

    Article  CAS  Google Scholar 

  • Manivel, A., Sivakumar, R., Anandan, S., & Ashokkumar, M. (2012). Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solution. Electrocatalysis, 3, 22–29. DOI: 10.1007/s12678-011-0072-z.

    Article  CAS  Google Scholar 

  • Martins, C. R., de Almeida, Y. M., do Nascimento, G. C., & de Azevedo, W. M. (2006). Metal nanoparticles incorporation during the photopolymerization of polypyrrole. Journal of Materials Science, 41, 7413–7418. DOI: 10.1007/s10853-006-0795-z.

    Article  CAS  Google Scholar 

  • Mazur, M., Michota-Kamińska, A., & Bukowska, J. (2007). Facile electrochemical fabrication of polymeric templates for spatially selective deposition of metals. Electrochemistry Communications, 9, 2418–2422. DOI: 10.1016/j.elecom.2007. 07.018.

    Article  CAS  Google Scholar 

  • Mo, Z. L., Zuo, D. D., Chen, H., Sun, Y. X., & Zhang, P. (2007). Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 43, 300–306. DOI: 10.1016/j.eurpolymj.2006.11.023.

    Article  CAS  Google Scholar 

  • Mukherjee, P., & Nandi, A. K. (2009). Electronic properties of poly(o-methoxy aniline)-silver nanocomposite thin films: influence of nanoparticle size and density. Journal of Materials Chemistry, 19, 781–786. DOI: 10.1039/b813203h.

    CAS  Google Scholar 

  • Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2008a). Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small, 4, 1301–1306. DOI: 10.1002/smll.200701199.

    Article  CAS  Google Scholar 

  • Muñoz-Rojas, D., Oró-Solé, J., & Gómez-Romero, P. (2008b). From nanosnakes to nanosheets: A matrix-mediated shape evolution. Journal of Physical Chemistry C, 112, 20312–20318. DOI: 10.1021/jp808187w.

    Article  CAS  Google Scholar 

  • Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2011). Shaping hybrid nanostructures with polymer matrices: the formation mechanism of silver-polypyrrole core/shell nanostructures. Journal of Materials Chemistry, 21, 2078–2086. DOI: 10.1039/c0jm01449d.

    Article  CAS  Google Scholar 

  • Nadagouda, M. N., & Varma, R. S. (2007). Room temperature bulk synthesis of silver nanocables wrapped with polypyrrole. Macromolecular Rapid Communications, 28, 2106–2111. DOI: 10.1002/marc.200700495.

    Article  CAS  Google Scholar 

  • Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: Catalytic polymerization of aniline and pyrrole. Journal of Nanomaterials, 2008, 782358. DOI: 10.1155/2008/782358.

    Article  CAS  Google Scholar 

  • Narang, J., Chauhan, N., Jain, P., & Pundir, C. S. (2012). Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. International Journal of Biological Macromolecules, 50, 672–678. DOI: 10.1016/j.ijbiomac.2012.01.023.

    Article  CAS  Google Scholar 

  • Neelgund, G. M., Hrehorova, E., Joyce, M., & Bliznyuk, V. (2008). Synthesis and characterization of polyaniline derivatives and silver nanoparticle composites. Polymer International, 57, 1083–1089. DOI: 10.1002/pi.2445.

    Article  CAS  Google Scholar 

  • Nesher, G., Serror, M., Avnir, D., & Marom, G. (2011). Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene-polyaniline. Composites Science and Technology, 71, 152–159. DOI: 10.1016/j.compscitech.2010.11.005.

    Article  CAS  Google Scholar 

  • Nguyen, V. H., & Shim, J. J. (2011). Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synthetic Metals, 161, 2078–2082. DOI: 10.1016/j.synthmet.2011.07.017.

    Article  CAS  Google Scholar 

  • Ocypa, M., Ptacińska, M., Michalska, A., Maksymiuk, K., & Hall, E. A. H. (2006). Electroless silver deposition on polypyrrole and poly(3,4-ethylenedioxythiophene): The reaction/diffusion balance. Journal of Electroanalytical Chemistry, 596, 157–168. DOI: 10.1016/j.jelechem.2006.07.032.

    Article  CAS  Google Scholar 

  • Oliveira, M. M., Zanchet, D., Ugarte, D., & Zarbin, A. J. G. (2004) Synthesis and characterization of silver nanoparticle/polyaniline nanocomposites. Progress in Colloid and Polymer Science, 128, 49–60. DOI: 10.1007/b97108.

    Google Scholar 

  • Oliveira, M. M., Castro, E. G., Canestraro, C. D., Zanchet, D., Ugarte, D., Roman, L. S., & Zarbin, A. J. G. (2006). A simple two-phase route to silver nanoparticles/polyaniline structures. Journal of Physical Chemistry B, 110, 17063–17069. DOI: 10.1021/jp060861f.

    Article  CAS  Google Scholar 

  • Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8.

    Article  CAS  Google Scholar 

  • Palaniappan, S., & Rajender, B. (2010). A novel polyanilinesilver nitrate-p-toluenesulfonic acid salt as recyclable catalyst in the stereoselective synthesis of β-amino ketones: “One-pot” synthesis in water medium. Advanced Synthesis & Catalysis, 352, 2507–2514. DOI: 10.1002/adsc.201000346.

    Article  CAS  Google Scholar 

  • Park, E. Y., Kim, H. Y., Song, J. Y., Oh, H. T., Song, H., & Jang, J. S. (2012). Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromolecular Research, 20, 1096–1101. DOI: 10.1007/s13233-012-0150-y.

    Article  CAS  Google Scholar 

  • Patil, D. S., Shaikh, J. S., Pawar, S. A., Devan, R. S., Ma, Y. R., Moholkar, A. V., Kim, J. H., Kalubarme, R. S., Park, C. J., & Patil, P. S. (2012). Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. Physical Chemistry, Chemical Physics, 14, 11886–11895. DOI: 10.1039/c2cp41757j.

    Article  CAS  Google Scholar 

  • Paulraj, P., Janaki, N., Sandhya, S., & Pandian, K. (2011). Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 28–34. DOI: 10.1016/j.colsurfa.2010.12.001.

    Article  CAS  Google Scholar 

  • Peng, Y. J., Qiu, L. H., Pan, C. T., Wang, C. C., Shang, S. M., & Yan, F. (2012). Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering. Electrochimica Acta, 75, 399–405. DOI: 10.1016/j.electacta.2012.05.034.

    Article  CAS  Google Scholar 

  • Pickup, N. L., Shapiro, J. S., & Wong, D. K. Y. (1998). Extraction of silver by polypyrrole films upon a base-acid treatment. Analytica Chimica Acta, 364, 41–51. DOI: 10.1016/s0003-2670(98)00144-5.

    Article  CAS  Google Scholar 

  • Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., & Bertino, M. F. (2005). One-pot synthesis of polyaniline-metal nanocomposites. Chemistry of Materials, 17, 5941–5944. DOI: 10. 1021/cm050827y.

    Article  CAS  Google Scholar 

  • Pintér, E., Patakfalvi, R., Fülei, T., Gingl, Z., Dékány, I., & Visy, C. (2005). Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants. Journal of Physical Chemistry B, 109, 17474–17478. DOI: 10.1021/jp0517652.

    Article  CAS  Google Scholar 

  • Prabhakar, P. K., Raj, S., Anuradha, P. R., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids and Surfaces B: Biointerfaces, 86, 146–153: DOI 10.1016/j.colsurfb.2011.03.033.

    Article  CAS  Google Scholar 

  • Prokeš, J., Křivka, I., & Stejskal, J. (1997). Control of electrical properties of polyaniline. Polymer International, 43, 117–125. DOI: 10.1002/(sici)1097-0126(199706)43:2〈117::aidpi713〉3.3.co;2-u.

    Article  Google Scholar 

  • Prokeš, J., & Stejskal, J. (2004). Polyaniline prepared in the presence of various acids: 2. Thermal stability of conductivity. Polymer Degradation and Stability, 86, 187–195. DOI: 10.1016/j.polymdegradstab.2004.04.012.

    Article  CAS  Google Scholar 

  • Pron, A., & Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science, 27, 135–190. 10.1016/s0079-6700(01)00043-0.

    Article  CAS  Google Scholar 

  • Ptschelin, V. (1935). Über die Sole des Emeraldins I. Die chemische Natur, die Gewinnung und die Eigenschaften der Sole. Colloid & Polymer Science, 70, 306–311. DOI: 10.1007/bf01442769. (in German)

    Google Scholar 

  • Qaiser, A. A., Hyland, M. M., & Patterson, D. A. (2011). Surface and charge transport characterization of polyaniline-cellulose acetate composite mebranes. Journal of Physical Chemistry B, 115, 1652–1661. DOI: 10.1021/jp109455m.

    Article  CAS  Google Scholar 

  • Qin, X. Y., Lu, W. B., Luo, Y. L., Chang, G. H., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated polypyrrole colloids and their application for H2O2 detection. Electrochemistry Communications, 13, 785–787. DOI: 10.1016/j.elecom.2011.05.002.

    Article  CAS  Google Scholar 

  • Qin, X.Y., Liu, S., Lu, W. B., Li, H.Y., Chang, G.H., Zhang, Y. W., Tian, J. Q., Luo, Y. L., Asiri, A. M., Al-Youbi, A. O., & Sun, X. P. (2012). Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst. Catalysis Science & Technology, 2, 711–714. DOI: 10.1039/c2cy00439a.

    Article  CAS  Google Scholar 

  • Qiu, T., Xie, H. X., Zhang, J. R., Zahoor, A., & Li, X. Y. (2011). The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants. Journal of Nanoparticle Research, 13, 1175–1182. DOI: 10.1007/s11051-010-0109-x.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Lee, K. P., Lee, Y. I., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer-metal hydrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62, 1815–1818. DOI: 10.1016/j.matlet.2007.10.025.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Sin, B. C., Ryu, K. S., Kim, J. C., Chung, H. I., & Lee, Y. I. (2009). Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synthetic Metals, 159, 595–603. DOI: 10.1016/j.synthmet.2008.11.030.

    Article  CAS  Google Scholar 

  • Routh, P., Mukherjee, P., & Nandi, A. K. (2010). RNA-poly(omethoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: Physical and electronic properties. Langmuir, 26, 5093–5100. DOI: 10.1021/la903553t.

    Article  CAS  Google Scholar 

  • Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034.

    Article  CAS  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476.

    Article  CAS  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential application in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.1478/s11696-009-0061-3.

    Article  CAS  Google Scholar 

  • Sapurina, I. Y., & Stejskal, J. (2010). The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russian Chemical Reviews, 79, 1123–1143. DOI: 10.1070/rc2010v079n12abeh004140.

    Article  CAS  Google Scholar 

  • Sapurina, I. Y., & Stejskal, J. (2012). Oxidation of aniline with strong and weak oxidants. Russian Journal of General Chemistry, 82, 256–275. DOI: 10.1134/s1070363212020168.

    Article  CAS  Google Scholar 

  • Šeděnková, M., Stejskal, J., & Prokeš, J. (2009). Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. ACS Applied Materials & Interfaces, 1, 1906–1912. DOI: 10.1021/am900320t.

    Article  CAS  Google Scholar 

  • Šeděnková, M., & Prokeš, J. (2011). Solid-state oxidation of aniline hydrochloride with various oxidants. Synthetic Metals, 161, 1353–1360. DOI: 10.1016/j.synthmet.2011.04.037.

    Article  CAS  Google Scholar 

  • Sestrem, R. H., Ferreira, D. C., Landers, R., Temperini, M. L. A., & do Nascimento, G. M. (2010). Synthesis and spectroscopic characterization of polymer and oligomers of orthophenylenediamine. European Polymer Journal, 46, 484–493. DOI: 10.1016/j.eurpolymj.2009.12.007.

    Article  CAS  Google Scholar 

  • Sezer, A., Gurudas, U., Collins, B., Mckinlay, A., & Bubb, D. M. (2009). Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chemical Physics Letters, 477, 164–168. DOI: 10.1016/j.cplett.2009. 06.070.

    Article  CAS  Google Scholar 

  • Shahi, M., Moghimi, A., Naderizadeh, B., & Maddah, B. (2011). Electrospun PVA-PANI and PVA-PANI-AgNO3 composite nanofibers. Scientia Iranica, 18, 1327–1331. DOI: 10.1016/j.scient.2011.08.013.

    Article  CAS  Google Scholar 

  • Sharma, J., & Imae, T. (2009). Recent advances in fabrication of anisotropic metallic nanostructures. Journal of Nanoscience and Nanotechnology, 9, 19–40. DOI: 10.1166/jnn.2009.j087.

    Article  CAS  Google Scholar 

  • Shenashen, M. A., Ayad, M. M., Salahuddin, N., & Youssif, M. A. (2010). Usage of quartz crystal microbalance technique to study polyaniline films formation in the presence of pphenylenediamine. Reactive & Functional Polymers, 70, 843–848. DOI: 10.1016/j.reactfunctpolym.2010.07.005.

    Article  CAS  Google Scholar 

  • Shenashen, M. A., Okamoto, T., & Haraguchi, M. (2011). Study the effect of phenylenediamine compounds on the chemical polymerization of aniline. Reactive & Functional Polymers, 71, 766–773. DOI: 10.1016/j.reactfunctpolym.2011.02.004.

    Article  CAS  Google Scholar 

  • Shi, Z. Q., Wang, H. J., Dai, T. Y., & Lu, Y. (2010). Room temperature synthesis of Ag/polypyrrole core-shell nanoparticles and hollow composite capsules. Synthetic Metals, 160, 2121–2127. DOI: 10.1016/j.synthmet.2010.07.042.

    Article  CAS  Google Scholar 

  • Shi, Z. Q., Zhou, H., Qing, X. T., Dai, T. Y., & Lu, Y. (2012). Facile fabrication and characterization of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antimicrobial property. Applied Surface Science, 258, 6359–6365. DOI: 10.1016/j.apsusc.2012.03.040.

    Article  CAS  Google Scholar 

  • Shin, D. Y., & Kim, I. (2009). Self-patterning of fine metal electrodes by means of the formation of isolated silver nanoclusters embedded in polyaniline. Nanotechnology, 20, 415301. DOI: 10.1088/0957-4484/20/41/415301.

    Article  CAS  Google Scholar 

  • Shukla, V. K., Yadav, P., Yadav, R. S., Mishra, P., & Pandey, A. C. (2012). A new class of PANI-Ag core-shell nanorods with sensing dimensions. Nanoscale, 4, 3886–3893. DOI: 10.1039/c2nr30963g.

    Article  CAS  Google Scholar 

  • Silva, C. H. B., Ferreira, D. C., Constantino, V. R. L., & Temperini, M. L. A. (2011). Characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. Journal of Raman Spectroscopy, 42, 1653–1659. DOI: 10.1002/jrs.2898.

    Article  CAS  Google Scholar 

  • Sim, S. Y., Gu, Y. J., Ahn, H. J., Yoon, C. S., & Im, S. S. (2009). Enhanced electrical conductivity of Ag-mercaptosuccinic acid-redoped polyaniline nanoparticles during thermal cycling above 200°. Polymer Degradation and Stability, 94, 208–212. DOI: 10.1016/j.polymdegradstab.2008.11.002.

    Article  CAS  Google Scholar 

  • Sinai, O., & Avnir, D. (2011). Organics@metals as the basis for silver/doped-silver electrochemical cell. Chemistry of Materials, 23, 3289–3295. DOI: 10.1021/cm2000655.

    Article  CAS  Google Scholar 

  • Singh, R. P., Tiwari, A., & Pandey, A. C. (2011). Silver/polyaniline nanocomposite for the electrocatalytic hydrazine oxidation. Journal of Inorganic and Organometalic Polymers and Materials, 21, 788–792. DOI: 10.1007/s10904-011-9554-y.

    Article  CAS  Google Scholar 

  • Song, W., Jia, H. Y., Cong, Q., & Zhao, B. (2007). Silver microflowers and large spherical particles: Controlled preparation and their wetting properties. Journal of Colloid and Interface Science, 311, 456–460. DOI: 10.1016/j.jcis.2007.03.058.

    Article  CAS  Google Scholar 

  • Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35, 357–401. DOI: 10.1016/j.progpolymsci.2009.09.003.

    Article  CAS  Google Scholar 

  • Stamplecoskie, K. G., & Scaiano, J. C. (2011). Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 115, 1403–1409. DOI: 10.1021/jp106666t.

    Article  CAS  Google Scholar 

  • Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258.

    CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Polyaniline dispersions 2. UV-Vis absorption spectra. Synthetic Metals, 61, 225–231. DOI: 10.1016/0379-6779(93) 91266-5.

    Article  CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Špírková, M. (1995). Accelerating effect of some cation radicals on the polymerization of aniline. Polymer, 36, 4135–4140. DOI: 10.1016/0032-3861(95)90996-f.

    Article  CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Helmstedt, M. (1996a). Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir, 12, 3389–3392. DOI: 10.1021/la9506483.

    Article  CAS  Google Scholar 

  • Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996b). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-x.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857.

    Article  CAS  Google Scholar 

  • Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007.

    Article  CAS  Google Scholar 

  • Stejskal, J., Prokeš, J., & Trchová, M. (2008a). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008b). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008c). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z.

    Article  CAS  Google Scholar 

  • Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009a). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: Beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605.

    Article  CAS  Google Scholar 

  • Stejskal, J., Prokeš, J., & Sapurina, I. (2009b). The reduction of silver ions with polyaniline: The effect of the type of polyaniline and the mole ratio of reagents. Materials Letters, 63, 709–711. DOI: 10.1016/j.matlet.2008.12.026.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Brožovš, J. (2009c). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z.

    Article  CAS  Google Scholar 

  • Stejskal, J., Trchová, M., Kovářová, J., Brožová, L., & Prokeš, J. (2009d). The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites. Reactive & Functional Polymers, 69, 86–90. DOI: 10.1016/j.reactfunctpolym.2008.11.004.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179.

    Article  CAS  Google Scholar 

  • Sulimenko, T., Stejskal, J., & Prokeš, J. (2001). Poly(phenylenediamine) dispersions. Journal of Colloid and Interface Science, 236, 328–334. DOI: 10.1006/jcis.2000.7415.

    Article  CAS  Google Scholar 

  • Sun, X. P. (2010). Morphology and size-controllable preparation of silver nanostructures through a wet-chemical route at room temperature. Inorganic Materials, 46, 679–682. DOI: 10.1134/s0020168510060208.

    Article  CAS  Google Scholar 

  • Sun, X. P., Dong, S. J., & Wang, E. K. (2005). Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route. Journal of Colloid and Interface Science, 290, 130–133. DOI: 10.1016/j.jcis.2005.04.016.

    Article  CAS  Google Scholar 

  • Sun, X. P., & Hagner, M. (2007). Novel preparation of snowflake-like dendritic nanostructures of Ag and Au at room temperature via a wet-chemical route. Langmuir, 23, 9147–9150. DOI: 10.1021/la701519x.

    Article  CAS  Google Scholar 

  • Sun, Y. Y., Guo, G. H., Yang, B. H., He, M. H., Tian, Y., Cheng, J. C., & Liu, Y. Q. (2012). Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. Journal of Materials Research, 27, 457–462. DOI: 10.1557/jmr.2011.408.

    Article  CAS  Google Scholar 

  • Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., & Kale, B. B. (2012). Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 92, 35–41. DOI: 10.1016/j.colsurfb.2011.11.006.

    Article  CAS  Google Scholar 

  • Tan, Y. W., Li, Y. F., & Zhu, D. B. (2003). Preparation of silver nanocrystals in the presence of aniline. Journal of Colloid and Interface Science, 258, 244–251. DOI: 10.1016/s0021-9797(02)00151-0.

    Article  CAS  Google Scholar 

  • Tchmutin, I. A., Ponomarenko, A. T., Krinichnaya, E. P., Kozub, G. I., & Efimov, O. N. (2003). Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 41, 1391–1395. DOI: 10.1016/s0008-6223(03)00067-8.

    Article  CAS  Google Scholar 

  • Thanjam, S., Philips, M. F., Komathi, S., Manisankar, P., Sivakumar, C., Gopalan, A., & Lee, K. P. (2011). Course of poly(4-aminodiphenylamine)/Ag nanocomposite formation through UV-vis spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 1256–1266. DOI: 10.1016/j.saa.2011.04.052.

    Article  CAS  Google Scholar 

  • Thanjam, I. S., Philips, M. F., Komathi, S., Manisankar, P., Gopalan, A. I., & Lee, K. P. (2012a). Influence of medium on the nanostructures and properties of poly(4-aminodiphenylamine)-silver nanocomposites. Polymer International, 61, 539–544. DOI: 10.1002/pi.3200.

    Article  CAS  Google Scholar 

  • Thanjam, I. S., Philips, M. F., Lee, K. P., & Gopalan, A. (2012b). Preparation of poly(4-aminodiphenylamine)/silver nanoparticles composite and catalysis. Journal of Materials Science: Materials in Electronics, 23, 807–810. DOI: 10.1007/s10854-011-0496-5.

    Article  CAS  Google Scholar 

  • Tian, Y., Li, Z. Q., Ski, K., & Yang, F. L. (2008). Spontaneous and electrochemical reduction of silver by polypyrrole deposits. Separation Science and Technology, 43, 3891–3901. DOI: 10.1080/01496390802212625.

    Article  CAS  Google Scholar 

  • Tian, J. Q., Liu, S., & Sun, X. P. (2010). Supramolecular microfibrils of o-phenylenediamine dimers: Oxidation-induced morphology change and the spontaneous formation of Ag nanoparticle decorated nanofibers. Langmuir, 26, 15112–15116. DOI: 10.1021/la103038m.

    Article  CAS  Google Scholar 

  • Tian, J. Q., Li, H. L., Lu, W. B., Luo, Y. L., Wang, L., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated poly(mphenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst, 136, 1806–1809. DOI: 10.1039/c0an00929f.

    Article  CAS  Google Scholar 

  • Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008). Substituted polyaniline nanofibers produced via rapid initiated polymerization, Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d.

    Article  CAS  Google Scholar 

  • Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001.

    Article  CAS  Google Scholar 

  • Trchová, M., & Stejskal, J. (2010). The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synthetic Metals, 160, 1479–1486. DOI: 10.1016/j.synthmet.2010.05.007.

    Article  CAS  Google Scholar 

  • Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6.

    Article  CAS  Google Scholar 

  • Tsakova, V. (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. Journal of Solid State Electrochemistry, 12, 1421–1434. DOI: 10.1007/s10008-007-0494-y.

    Article  CAS  Google Scholar 

  • Visy, C., Pintér, E., Fülei, T., & Ptakfalvi, R. (2005). Characterization of electronically conducting polypyrrole based composite materials. Synthetic Metals, 152, 13–16. DOI: 10.1016/j.synthmet.2005.07.084.

    Article  CAS  Google Scholar 

  • Vorotyntsev, M. A., Skompska, M., Rajchowska, A., Borysiuk, J., & Donten, M. (2011). A new strategy towards electroactive polymer-inorganic nanostructure composites. Silver nanoparticles inside polypyrrole matrix with pendant titanocene dichloride complexes. Journal of Electroanalytical Chemistry, 662, 105–115. DOI: 10.1016/j.jelechem.2011.03. 037.

    CAS  Google Scholar 

  • Wang, H. L., Li, W. G., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposi tion of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508.

    Article  CAS  Google Scholar 

  • Wang, S. B., & Shi, G. Q. (2007). Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Materials Chemistry and Physics, 102, 255–259. DOI: 10.1016/j.matchemphys.2006.12.014.

    Article  CAS  Google Scholar 

  • Wang, W., Li, Q., Li, Y., Xu, H., & Zhai, J. P. (2009a). Electroless Ag coating of fly ash cenospheres using polyaniline activator. Journal of Physics D: Applied Physics, 42, 215306. DOI: 10.1088/0022-3727/42/21/215306.

    Article  CAS  Google Scholar 

  • Wang, W. Q., Shi, G. Q., & Zhang, R. F. (2009b). Facile fabrication of silver/polypyrrole composites by the modified silver mirror reaction. Journal of Materials Science, 44, 3002–3005. DOI: 10.1007/s10853-009-3416-9.

    Article  CAS  Google Scholar 

  • Wang, W. Q., & Zhang, R. F. (2009). Silver-polypyrrole composites: Facile preparation and application in surfaceenhanced Raman spectroscopy. Synthetic Metals, 159, 1332–1335. DOI: 10.1016/j.synthmet.2009.03.002.

    Article  CAS  Google Scholar 

  • Wang, W. Q., Li, W. L., Ye, J., & Zhang, R. F. (2010a). Surface enhanced Raman scattering of Rhodamine B adsorbed on polypyrrole-silver composites. Journal of Polymer Materials, 27, 351–357.

    CAS  Google Scholar 

  • Wang, W. Q., Li, W. L., & Zhang, R. F. (2010b). Controlled fabrication of surface-enhanced-Raman scattering-active silver nanostructures on polypyrrole films. Materials Chemistry and Physics, 124, 385–388. DOI: 10.1016/j.matchemphys.2010.06.051.

    Article  CAS  Google Scholar 

  • Wang, W. Q., Li, W. L., Zhang, R. F., & Wang, J. J. (2010c). Synthesis and characterization of Ag@PPy yolk-shell nanocomposite. Synthetic Metals, 160, 2255–2259. DOI: 10.1016/j.synthmet.2010.08.016.

    Article  CAS  Google Scholar 

  • Wang, Z. F., Liao, F., Guo, T. T., Yang, S. W., & Zeng, C. M. (2012a). Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. Journal of Electroanalytical Chemistry, 664, 135–138. DOI: 10.1016/j.jelechem.2011.11.006.

    Article  CAS  Google Scholar 

  • Wang, L., Zhu, H. Z., Song, Y. H., Liu, L., He, Z. F., Wan, L. L., Chen, S. H., Xiang, Y., Chen, S. S., & Chen, J. (2012b). Architecture of poly(o-phenylenediamine)-Ag nanoparticle composites for a hydrogen peroxide senor. Electrochimica Acta, 60, 314–320. DOI: 10.1016/j.electacta.2011.11.045.

    Article  CAS  Google Scholar 

  • Wei, M., & Lu, Y. (2009). Templating fabrication of polypyrrole nanorods/nanofibers. Synthetic Metals, 159, 1061–1066. DOI: 10.1016/j.synthmet.2009.01.031.

    Article  CAS  Google Scholar 

  • Wei, Y. Y., Liang, L., Yang, X. M., Pan, G. L., Yan, G. P., & Yu, X. H. (2010a). One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Research Letters, 5, 443–437. DOI: 10.1007/s11671-009-9501-9.

    Google Scholar 

  • Wei, Y. Y., Zhao, Y., Li, L., Yang, X. M., Yu, X. H., & Yan, G. P. (2010b). Magnetic ionic liquid-assisted syntesis of polypyrrole/AgCl nanocomposites. Polymers for Advanced Technologies, 21, 742–745. DOI: 10.1002/pat.1682.

    Article  CAS  Google Scholar 

  • Wessling, B., Thun, M., Arribas-Sanchez, C., Gleeson, S., Posdorfer, J., Rischka, M., & Zeysing, B. (2007). An organic metal/silver nanoparticle finish on copper for efficient passivation and solderability preservation. Nanoscale Research Letters, 2, 455–460. DOI: 10.1007/s11671-007-9086-0.

    Article  CAS  Google Scholar 

  • Wolz, A., Zils, S., Michel, M., & Roth, C. (2010). Structured multilayered electrodes of proton/electron conducting polymer for polymer electrolyte membrane fuel cells assembled by spray coating. Journal of Power Sources, 195, 8162–8167. DOI: 10.1016/j.jpowsour.2010.06.087.

    Article  CAS  Google Scholar 

  • Wu, X. M., Qi, S. H., He, J., Chen, B., & Duan, G. C. (2010). Synthesis of high conductivity polyaniline/Ag/graphite nanosheet composites via ultrasonic technique. Journal of Polymer Research, 17, 751–757. DOI: 10.1007/s10965-009-9366-8.

    Article  CAS  Google Scholar 

  • Wu, X. M., Qi, S. H., & Duan, G. C. (2012). Polyaniline/graphite nanosheet, polyaniline/Ag/graphite nanosheet, polyaniline/Ni/graphite nanosheet composites and their electromagnetic properties. Synthetic Metals, 162, 1609–1614. DOI: 10.1016/j.synthmet.2012.07.012.

    Article  CAS  Google Scholar 

  • Wudl, F., Angus, R. O., Jr., Lu, F. L., Allemand, P. M., Vachon, D., Nowak, M., Liu, Z. X., Schaffer, H., & Heeger, A. J. (1987). Poly p-phenyleneamineimine: synthesis and comparison to polyaniline. Journal of the American Chemical Society, 109, 3677–3684. DOI: 10.1021/ja00246a026.

    Article  CAS  Google Scholar 

  • Xia, Y. Y. (2011). The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature. Journal of Nanoparticle Research, 13, 1717–1721. DOI: 10.1007/s11051-010-9926-1.

    Article  CAS  Google Scholar 

  • Xing, S. X., & Zhao, G. K. (2007). One-step synthesis of polypyrrole-Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Materials Letters, 61, 2040–2044. DOI: 10.1016/j.matlet.2006.08.011.

    Article  CAS  Google Scholar 

  • Xu, P., Jeon, S. H., Chen, H. T., Luo, H. M., Zou, G. F., Jia, Q. X., Anghel, M., Teuscher, C., Williams, D. J., Zhang, B., Han, X. J., & Wang, H. L. (2010a). Facile synthesis of electrical properties of silver wires through chemical reduction by polyaniline. Journal of Physical Chemistry C, 114, 22147–22154. DOI: 10.1021/jp109207d.

    Article  CAS  Google Scholar 

  • Xu, P., Jeon, S. H., Mack, N. H., Doorn, S. K., Williams, D. J., Han, X. J., & Wang, H. L. (2010b). Field assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale, 2, 1436–1440. DOI: 10.1039/c0nr00106f.

    Article  CAS  Google Scholar 

  • Xu, P., Mack, N. H., Jeon, S. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010c). Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. Langmuir, 26, 8882–8886. DOI: 10.1021/la904617p.

    Article  CAS  Google Scholar 

  • Xu, P., Zhang, B., Mack, N. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010d). Synthesis and homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 20, 7222–7226. DOI: 10.1039/c0jm01322f.

    Article  CAS  Google Scholar 

  • Yan, J., Han, X. J., He, J. J., Kang, L. L., Zhang, B., Du, Y. C., Zhao, H. T., Dong, C. K., Wang, H. L., & Xu, P. (2012). Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. Applied Materials & Interfaces, 4, 2752–2756. DOI: 10.1021/am300381v.

    Article  CAS  Google Scholar 

  • Yang, X. M., & Lu, Y. (2005). Hollow nanometer-sized polypyrrole capsules with controllable shell thickness synthesized in the presence of chitosan. Polymer, 46, 5324–5328. DOI: 10.1016/j.polymer.2005.04.023.

    Article  CAS  Google Scholar 

  • Yang, X. M., Li, L., & Yan, F. (2010a). Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuators B: Chemical, 145, 495–500. DOI: 10.1016/j.snb.2009.12.065.

    Article  CAS  Google Scholar 

  • Yang, X. M., Li, L., & Yan, F. (2010b). Fabrication of polypyrrole/Ag composite nanotubes via in situ reduction of AgNO3 on polypyrrole nanotubes. Chemistry Letters, 39, 118–119. DOI: 10.1246/cl.2010.118.

    Article  CAS  Google Scholar 

  • Yang, X. M., Li, L., & Zhao, Y. (2010c). Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synthetic Metals, 160, 1822–1825. DOI: 10.1016/j.synthmet.2010.06.018.

    Article  CAS  Google Scholar 

  • Yang, X., & Wang, E. (2011). A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Analytical Chemistry, 83, 5005–5011. DOI: 10.1021/ac2008465.

    Article  CAS  Google Scholar 

  • Yang, J. P., Yin, H. J., Jia, J. J., & Wei, Y. (2011). Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant. Langmuir, 27, 5047–5053. DOI: 10.1021/la200013z.

    Article  CAS  Google Scholar 

  • Yang, Y. Q., Qi, S. H., Qin, Y. C., & Zhang, X. X. (2012a). Synthesis and characterization of silver-coated graphite nanosheets with pyrrole via in situ polymerization. Journal of Applied Polymer Science, 125, E388–E397. DOI: 10.1002/app.36383.

    Article  CAS  Google Scholar 

  • Yang, M., Xiang, Z. J., & Wang, G. (2012b). A novel orchidlike polyaniline superstructure by solvent-thermal method. Journal of Colloid and Interface Science, 367, 49–54. DOI: 10.1016/j.jcis.2011.08.086.

    Article  CAS  Google Scholar 

  • Yao, T. J., Wang, C. X., Wu, J., Lin, Q., Lv, H., Zhang, K., Yu, K., & Yang, B. (2009). Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 338, 573–577. DOI: 10.1016/j.jcis.2009.05.001.

    Article  CAS  Google Scholar 

  • Ye, S. J., & Lu, Y. (2008). Optical properties of Ag@polypyrrole nanoparticles calculated by Mie theory. Journal of Physical Chemistry C, 112, 8767–8772. DOI: 10.1021/jp077710c.

    Article  CAS  Google Scholar 

  • Ye, S. J., Fang, L., & Lu, Y. (2009). Contribution of chargetransfer effect to surface-enhanced IR for Ag@PPy nanoparticles. Physical Chemistry Chemical Physics, 11, 2480–2484. DOI: 10.1039/b816070h.

    Article  CAS  Google Scholar 

  • Yi, Q. F., & Song, L. H. (2012). Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis, 24, 1655–1663. DOI: 10.1002/elan.201200 154.

    Article  CAS  Google Scholar 

  • Yin, H. J., & Yang, J. P. (2012). A novel strategy for the controlled synthesis of silver halide/polyaniline nanocomposites with different polyaniline morphologies. Macromolecular Materials and Engineering, 297, 203–208. DOI: 10.1002/mame.201100130.

    Article  CAS  Google Scholar 

  • ZabrodskiĽ, A. G., Kompan, M. E., Malyshkin, V. G., & Sapurina, I. Y. (2006). Carbon supported polyaniline as anode catalyst: Pathway to platinum-free fuel cells. Technical Physics Letters, 32, 758–761. DOI: 10.1134/s1063785006090070.

    Article  CAS  Google Scholar 

  • Zhang, A. Q., Cui, C. Q., Lee, J. Y., & Loh, F. C. (1995). Interactions between polyaniline and silver cations. Journal of Electrochemical Society, 142, 1097–1104. DOI: 10.1149/1.2044136.

    Article  CAS  Google Scholar 

  • Zhang, A. Q., Cui, C. Q., & Lee, J. Y. (1996). Metalpolymer interactions in the Ag+|poly-o-aminophenol system. Journal of Electroanalytical Chemistry, 413, 143–151. DOI: 10.1016/0022-0728(96)04668-2.

    Article  Google Scholar 

  • Zhang, X. Y., & Manohar, S. K. (2005). Narrow pore-diameter polypyrrole nanotubes. Journal of the American Chemical Society, 127, 14156–14157. DOI: 10.1021/ja054789v.

    Article  CAS  Google Scholar 

  • Zhang, W. M., Chen, J., Wagner, P., Swiegers, G. F., & Wallace, G. G. (2008). Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 10, 519–522. DOI: 10.1016/j.elecom.2008.01.032.

    Article  CAS  Google Scholar 

  • Zhang, X. L., Xing, J. X., & Jin, F. (2010). Electrocatalytic study of silver/polypyrrole nanowire composite modified electrodes. Asian Journal of Chemistry, 22, 755–760.

    CAS  Google Scholar 

  • Zhang, L. Y., Chai, L. Y., Duan, J. Y., Li, G. L., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011a). One-step and cost-effective synthesis of micrometer-sized saw-like silver nanosheets by oil/water interfacial method. Materials Letters, 65, 1295–1298, DOI: 10.1016/j.matlet.2011.01.062.

    Article  CAS  Google Scholar 

  • Zhang, L. Y., Chai, L. Y., Liu, J., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011b). pH manipulation: A facile method for lowering oxidation state and keeping good yield of poly (m-phenylenediamine) and its powerful Ag+ adsorption ability. Langmuir, 27, 13729–13738. DOI: 10.1021/la203162y.

    Article  CAS  Google Scholar 

  • Zhang, Y. W., Wang, L., Tian, J. Q., Li, H. L., Luo, Y. L., & Sun, X. P. (2011c). Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. Langmuir, 27, 2170–2175. DOI: 10.1021/la105092f.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhi, W. X., Yan, B., & Xu, X. X. (2012). α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity. Powder Technology, 221, 177–182. DOI: 10.1016/j.powtec.2011.12.064.

    Article  CAS  Google Scholar 

  • Zhao, C. J., Zhao, Q. T., Zhao, Q. Z., Qiu, J. R., Zhu, C. S., & Guo, S. W. (2007). Preparation and optical properties of Ag/PPy composite colloids. Journal of Photochemistry and Photobiology A: Chemistry, 187, 146–151. DOI: 10.1016/j.jphotochem.2006.10.006.

    Article  CAS  Google Scholar 

  • Zhao, B. B., & Nan, Z. D. (2012a). Enhancement of electrical conductivity by incorporation of Ag into core/shell structure of Fe3O4/Ag/PPy/NPs. Materials Science and Engineering: C, 32, 804–810. DOI: 10.1016/j.msec.2012.01.030.

    Article  CAS  Google Scholar 

  • Zhao, B. B., & Nan, Z. D. (2012b). Formation of self-assembled nanofiber-like Ag@PPy core/shell structures induced by SDBS. Materials Science and Engineering: C, 32, 1971–1975. DOI: 10.1016/j.msec.2012.05.029.

    Article  CAS  Google Scholar 

  • Zhao, Y. C., Tomšík, E., Wang, J. X., Morávková, Z., Zhigunov, A., Stejskal, J., & Trchová, M. (2013). Self-assembly of aniline oligomers. Chemistry — An Asian Journal, 8, 129–137. DOI: 10.1002/asia.201200836.

    Article  CAS  Google Scholar 

  • Zhou, H. H., Ning, X. H., Li, S. L., Chen, J. H., & Kuang, Y. F. (2006). Synthesis of polyaniline-silver nanocomposite film by unsymmetrical square wave current method. Thin Solid Films, 510, 164–168. DOI: 10.1016/j.tsf.2005.12.310.

    Article  CAS  Google Scholar 

  • Zhou, Z., He, D. L., Guo, Y. N., Cui, Z. D., Wang, M. H., Li, G. X., & Yang, R. H. (2009). Fabrication of polyaniline-silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems. Thin Solid Films, 517, 6767–6771. DOI: 10.1016/j.tsf.2009.05.043.

    Article  CAS  Google Scholar 

  • Zięba, A., Drelinkiewicz, A., Konyushenko, E. N., & Stejskal, J. (2010). Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterifacion of triglycerides and esterification of fatty acids with methanol. Applied Catalysis A: General, 383, 169–181. DOI: 10.1016/j.apcata.2010.05.042.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011a). Lamellar-structured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011b). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Stejskal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stejskal, J. Conducting polymer-silver composites. Chem. Pap. 67, 814–848 (2013). https://doi.org/10.2478/s11696-012-0304-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0304-6

Keywords

Navigation