Skip to main content
Log in

Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study’s main objective was the development of effective low-cost sorbents for the removal of heavy metal ions from aqueous solutions. The influence of different factors on the sorption capacity of ash and modified ash as low-cost sorbents obtained by different methods was investigated. The synthesis of new ash-based materials was carried out at ambient temperature (20°C), 70°C, and 90°C, respectively, in an alkaline medium with NaOH concentrations of 2 M and 5 M, respectively, corresponding to a mixture with solid/liquid ratios of 1: 3 and 1: 5, respectively. The prepared materials (sorbents) were characterised by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction, and BET surface measurement. Adsorption isotherms were determined using the batch equilibrium method. The results showed that these types of new materials displayed a good capacity to remove copper, nickel, and lead ions (29.97 mg of Cu2+ per g of sorbent, 303 mg of Ni2+ per g of sorbent, and 1111 mg of Pb2+ per g of sorbent) from aqueous solutions. The modified materials were prepared using an alkaline attack (a recognised method used in previous studies), but Romanian ash from a thermal power plant was studied for the above purpose for the first time. Hence, the factors which affect the sorption capacity of the prepared low-cost sorbents were determined and their behaviour was explained, taking into account the composition and structure of the new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Zboon, K., Al-Harahsheh, M. S., & Hani, F. B. (2011). Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 188, 414–421. DOI:10.1016/j.jhazmat.2011.01.133.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. DOI: 10.1016/s0304-3894(02)00263-7.

    Article  CAS  Google Scholar 

  • Buema, G., Cimpeanu, S. M., Sutiman, D. M., Bucur, R. D., Rusu, L., Cretescu, I., Ciocinta, R. C., & Harja, M. (2013). Lead removal from aqueous solution by bottom ash. Journal of Food, Agriculture & Environment. (submitted for press)

  • Ciobanu, G., Ignat, D., Carja, G., & Luca, C. (2009). Hydroxyapatite/polyurethane composite membranes for lead ions removal. Environmental Engineering and Management Journal, 8, 1347–1350.

    CAS  Google Scholar 

  • Ciocinta, R. C., Harja, M., Bucur, D., Rusu, L., Barbuta, M., & Munteanu, C. (2012). Improving soil quality by adding modified ash. Environmental Engineering and Management Journal, 11, 297–305.

    CAS  Google Scholar 

  • Depoi, F. S., Pozebon, D., & Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. International Journal of Coal Geology, 76, 227–236. DOI:10.1016/j.coal.2008.07.013.

    Article  CAS  Google Scholar 

  • Djomgoue, P., Siewe, M., Djoufac, E., Kenfack, P., & Njopwouo, D. (2012). Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel in aqueous solution. Applied Surface Science, 258, 7470–7479. DOI:10.1016/j.apsusc.2012.04.065.

    CAS  Google Scholar 

  • Derco, J., Černochová, L., Krcho, L., & Lalai, A. (2011). Dynamic simulations of waste water treatment plant operation. Chemical Papers, 65, 813–821. DOI: 10.2478/s11696-011-0076-4.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas (2009). Low-cost adsorbents: Growing approach to wastewater treatment — a review. Critical Reviews in Environmental Science and Technology, 39, 783–842. DOI:10.1080/10643380801977610.

    Article  Google Scholar 

  • Harja, M, Bąrbutą, M, & Gavrilescu, M. (2009). Study of morphology for geopolymer materials obtained from fly ash. Environmental Engineering and Management Journal, 8, 1021–1027.

    CAS  Google Scholar 

  • Harja, M., Barbuta, M., Rusu, L., Munteanu, C., Buema, G., & Doniga, E. (2011a). Simultaneous removal of Astrazone blue and lead onto low cost sorbents based on power plant ash. Environmental Engineering and Management Journal, 10, 341–347.

    CAS  Google Scholar 

  • Harja, M., Gurita, A. A., Barbuta, M., & Ciocinta, R. C. (2011b). Zelites from power plant ash for waste water treatment. Lucrari àtiinifice. Seria Agronomie, 54(Supplement), 30–34.

    Google Scholar 

  • Harja, M., Bucur, D., Cimpeanu, S. M., Ciocinta, R. C., & Gurita, A. A. (2012a). Conversion of ash on zeolites for soil application. Journal of Food, Agriculture & Environment, 10(2), 1056–1059.

    CAS  Google Scholar 

  • Harja, M., Buema, G., Sutiman, D. M., Munteanu, C., & Bucur, D. (2012b). Low cost adsorbents obtained from ash for copper removal. Korean Journal of Chemical Engineering. DOI: 10.1007/s11814-012-0087-z. (in press)

  • Harja, M., Rusu, L., Bucur, D., & Ciocinta, R. C. (2012c). Fly ash-derived zeolites as adsorbents for Ni removal from wastewater. Revue Roumaine de Chimie. (submitted for press)

  • Hernandez-Ramirez, O., & Holmes, S. M. (2008). Novel and modified materials for wastewater treatment applications. Journal of Material Chemistry, 18, 2751–2761. DOI: 10.1039/b716941h.

    Article  CAS  Google Scholar 

  • Izidoro, J. C., Fungaro, D. A., dos Santos, F., & Wang, S. B. (2012a). Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Processing Technology, 97, 38–44. DOI:10.1016/j.fuproc.2012.01.009.

    Article  CAS  Google Scholar 

  • Izidoro, J. C., Fungaro, D. A., & Wang, S. B. (2012b). Zeolite synthesis from Brazilian coal fly ash for removal of Zn2+ and Cd2+ from water. Advanced Materials Research, 356–360, 1900–1908. DOI: 10.4028/www.scientific.net/AMR.356-360.1900.

    Google Scholar 

  • Ojha, K., Pradhan, N. C., & Samanta, A. M. (2004). Zeolite from fly ash: synthesis and characterization. Bulletin of Materials Science, 27, 555–564. DOI: 10.1007/bf02707285.

    Article  CAS  Google Scholar 

  • Olgun, A., & Atar, N. (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 18, 1751–1757. DOI:10.1016/j.jiec.2012.03.020.

    Article  CAS  Google Scholar 

  • Ozturkcan, A. S., Turhan, K., & Turgut, Z. (2012). Ultrasoundassisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature. Chemical Papers, 66, 61–66. DOI: 10.2478/s11696-011-0097-z.

    Article  CAS  Google Scholar 

  • Paprocki, A. (2009). Síntese de zeólitas a partir de cinzas de carvão visando sua utilização na descontaminação de drenagem ácida de mina. Ms. thesis. Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.

    Google Scholar 

  • Piuleac, C. G., Curteanu, S., & Cazacu, M. (2010). Optimization by NN-GA technique of the metal complexing process. Potential application in wastewater treatment. Environmental Engineering and Management Journal, 9, 239–247.

    CAS  Google Scholar 

  • Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72. DOI:10.1016/j.coal.2004.04.003.

    Article  CAS  Google Scholar 

  • Poole, C., Prijatama, H., & Rice, N. M. (2000). Synthesis of zeolite adsorbents by hydrothermal treatment of PFA wastes: A comparative study. Minerals Engineering, 13, 831–842. DOI: 10.1016/s0892-6875(00)00072-8.

    Article  CAS  Google Scholar 

  • Qiu, W., & Zheng, Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145, 483–488. DOI:10.1016/j.cej.2008.05.001.

    Article  CAS  Google Scholar 

  • Querol, X., Moreno, N., Umaña, J. C., Alastuey, A., Hernández, E., López-Soler, A., & Plana, F. (2002). Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 50, 413–423. DOI: 10.1016/s0166-5162(02)00124-6.

    Article  CAS  Google Scholar 

  • Rasouli, M., Yaghobi, N., Hafezi, M., & Rasouli, M. (2012). Adsorption of divalent lead ions from aqueous solution using low silica nano-zeolite X. Journal of Industrial and Engineering Chemistry, 18, 1970–1976. DOI:10.1016/j.jiec.2012.05.014.

    Article  CAS  Google Scholar 

  • Rosales, E., Pazos M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for theremoval of heavy metal and dye: Chromium and Azure B. Desalination, 284, 150–156. DOI:10.1016/j.desal.2011.08.049.

    Article  CAS  Google Scholar 

  • Ryu, T. G., Ryu, J. C., Choi, C. H., Kim, C. G., Yoo, S. J., Yang, H. S., & Kim, Y. H. (2006). Preparation of Na-P1 zeolite with high cation exchange capacity from coal fly ash. Journal of Industrial and Engineering Chemistry, 12, 401–407.

    CAS  Google Scholar 

  • Sarbak, Z., Stańczyk, A., & Kramer-Wachowiak, M. (2004). Characterization of surface properties of various fly ashes. Powder Technology, 145, 82–87. DOI:10.1016/j.powtec.2004. 04.041.

    Article  CAS  Google Scholar 

  • Scott, J., Guang, D., Naeramitmarnsuk, K., Thabuot, M., & Amal, R. (2001). Zeolite synthesis from coal fly ash for the removal of lead ions from aqueous solution. Journal of Chemical Technology and Biotechnology, 77, 63–69. DOI: 10.1002/jctb.521.

    Article  Google Scholar 

  • Shiguemoto, N., Hayashi, H., & Miyaura, K. (1993). Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. Journal of Materials Science, 28, 4781–4786. DOI: 10.1007/bf00414272.

    Article  Google Scholar 

  • Šljivić, M., Smičiklas, I., Pejanović, S., & Plećaš, I. (2009). Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Applied Clay Science, 43, 33–40. DOI:10.1016/j.clay.2008.07.009.

    Article  Google Scholar 

  • Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304, 21–28. DOI:10.1016/j.jcis.2006.07.068.

    Article  CAS  Google Scholar 

  • Um, N. I., Han, G. C., You, K. S., & Ahn, J. W. (2009). Immobilization of Pb, Cd and Cr by synthetic NaP1 zeolites from coal bottom ash treated by density separation. Resources Processing, 56, 130–137. DOI: 10.4144/rpsj.56.130.

    Article  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 402647. DOI:10.5402/2011/402647.

    Article  Google Scholar 

  • Xu, D., Zhou, X., & Wang, X. K. (2008). Adsorption and desorption of Ni2+ on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Applied Clay Science, 39, 133–141. DOI:10.1016/j.clay.2007.05. 006.

    Article  CAS  Google Scholar 

  • Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171, 1–15. DOI: 10.1016/j.jhazmat.2009.05.103.

    Article  CAS  Google Scholar 

  • Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41, 820–831. DOI: 10.1080/00103621003592 341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Cretescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harja, M., Buema, G., Sutiman, D.M. et al. Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash. Chem. Pap. 67, 497–508 (2013). https://doi.org/10.2478/s11696-012-0303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0303-7

Keywords

Navigation