Skip to main content

Advertisement

Log in

Printing polyaniline for sensor applications

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In recent years, much research has focused on the development of low-cost, printed electrochemical sensor platforms for environmental monitoring and clinical diagnostics. Much effort in this area has been based on utilising the redox properties of conducting polymers, particularly polyaniline (PANI). In tackling the inherent lack of processability exhibited by these materials, several groups have examined various mass-amenable fabrication approaches to obtain suitable thin films of PANI for sensing applications. Specifically, the approaches investigated over the years include the in situ chemical synthesis of PANI, the use of sulphonated derivatives of PANI and the synthesis of aqueousbased nano-dispersions of PANI. Nano-dispersions have shown a great deal of promise for sensing applications, given that they are inkjet-printable, facilitating the patterning of conducting polymer directly to the substrate. We have shown that inkjet-printed films of PANI can be finely controlled in terms of their two-dimensional pattern, thickness, and conductivity, highlighting the level of precision achievable by inkjet printing. Utilising these nanomaterials as inkjet-printable inks opens novel, facile, and economical possibilities for conducting polymer-printed electronic applications in areas of sensing, but also many other application areas such as energy storage, displays, organic light-emitting diodes. Given that inkjet-printing is a scalable manufacturing technique, it renders possible the large-scale production of devices such as sensors for a range of applications. Several successes have emerged from our work and from the work of others in the area of applying PANI in low-cost sensor applications, which is the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrosi, A., Morrin, A., Smyth, M. R., & Killard, A. J. (2008). The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Analytica Chimica Acta, 609, 37–43. DOI: 10.1016/j.aca.2007.12.017.

    Article  CAS  Google Scholar 

  • Casella, I. G., & Guascito, M. R. (1997). Electrocatalysis of ascorbic acid ion the glassy carbon electrode chemically modified with polyaniline films. Electroanalysis, 9, 1381–1386. DOI: 10.1002/elan.1140091802.

    Article  CAS  Google Scholar 

  • Chen, F., & Liu, P. (2011). Conducting polyaniline nanoparticles and their dispersion for waterborne corrosion protection coatings. ACS Applied Materials & Interfaces, 3, 2694–2702. DOI: 10.1021/am200488m.

    Article  CAS  Google Scholar 

  • Chung, I. J., & Kang, I. B. (2009). Flexible display technology — opportunity and challenges to new business application. Molecular Crystals and Liquid Crystals, 507, 1–17. DOI: 10.1080/15421400903047950.

    Article  CAS  Google Scholar 

  • Crowley, K., Morrin, A., Hernandez, A., O’Malley, E., Whitten, P. G., Wallace, G. G., Smyth, M. R., & Killard, A. J. (2008a). Fabrication of an ammonia gas sensor using inkjetprinted polyaniline nanoparticles. Talanta, 77, 710–717. DOI: 10.1016/j.talanta.2008.07.022.

    Article  CAS  Google Scholar 

  • Crowley, K., O’Malley, E., Morrin, A., Smyth, M. R., & Killard, A. J. (2008b). An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst, 133, 391–399. DOI: 10.1039/b716154a.

    Article  CAS  Google Scholar 

  • Crowley, K., Morrin, A., Shepherd, R. L., Panhuis, M. I. H., Wallace, G. G., Smyth, M. R., & Killard, A. J. (2010). Fabrication of polyaniline-based gas sensors using piezoelectric inkjet and screen printing for the detection of hydrogen sulfide. IEEE Sensors Journal, 10, 1419–1426. DOI: 10.1109/jsen.2010.2044996.

    Article  CAS  Google Scholar 

  • Cruz-Silva, R., Romero-García, J., Angulo-Sánchez, J. L., Flores-Loyola, E., Farías, M. H., Castillón, F. F., & Díaz, J. A. (2004). Comparative study of polyaniline cast films prepared from enzymatically and chemically synthesized polyaniline. Polymer, 45, 4711–4717. DOI: 10.1016/j.polymer.2004.05.007.

    Article  CAS  Google Scholar 

  • Grennan, K., Strachan, G., Porter, A. J., Killard, A. J., & Smyth, M. R. (2003). Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement. Analytica Chimica Acta, 500, 287–298. DOI: 10.1016/s0003-2670(03)00942-5.

    Article  CAS  Google Scholar 

  • Grennan, K., Killard, A. J., & Smyth, M. R. (2005). Chemically polymerized polyaniline films for the mass-production of biosensor devices. Electroanalysis, 17, 1360–1369. DOI: 10.1002/elan.200503283.

    Article  CAS  Google Scholar 

  • Grummt, U. W., Pron, A., Zagorska, M., & Lefrant, S. (1997). Polyaniline based optical pH sensor. Analytica Chimica Acta, 357, 253–259. DOI: 10.1016/s0003-2670(97)00572-2.

    Article  CAS  Google Scholar 

  • Guo, R., Barisci, J. N., Innis, P. C., Too, C. O., Wallace, G. G., & Zhou, D. (2000). Electrohydrodynamic polymerization of 2-methoxyaniline-5-sulfonic acid. Synthetic Metals, 114, 267–272. DOI: 10.1016/s0379-6779(00)00242-3.

    Article  CAS  Google Scholar 

  • Gvozdenović, M. M., Jugović, B. Z., Stevanović, J. S., Trišović, T. L., & Grgur, B. N. (2011). Electrochemical polymerization of aniline. In E. Schab-Balcerzak (Ed.), Electropolymerization (pp. 77–96). Rijeka, Croatia: InTech.

    Google Scholar 

  • Han, M. G., Cho, S. K., Oh, S. G., & Im, S. S. (2002). Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synthetic Metals, 126, 53–60. DOI: 10.1016/s0379-6779(01)00494-5.

    Article  CAS  Google Scholar 

  • Huang, J. X., & Kaner, R. B. (2004a). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821. DOI: 10.1002/anie.200460616.

    Article  CAS  Google Scholar 

  • Huang, J. X., & Kaner, R. B. (2004b). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754.

    Article  CAS  Google Scholar 

  • Jang, J., Ha, J., & Cho, J. (2007a). Fabrication of waterdispersizle polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Advanced Materials, 19, 1772–1775. DOI: 10.1002/adma.200602127.

    Article  CAS  Google Scholar 

  • Jang, J., Ha, J., & Kim, S. (2007b). Fabrication of polyaniline nanoparticles using microemulsion polymerization. Macromolecular Research, 15, 154–159. DOI: 10.1007/bf03218767.

    Article  CAS  Google Scholar 

  • Kazimierska, E., Smyth, M. R., & Killard, A. J. (2009). Sizedependent electrocatalytic reduction of nitrite at nanostructured films of hollow polyaniline spheres and polyaniline-polystyrene core-shells. Electrochimica Acta, 54, 7260–7267. DOI: 10.1016/j.electacta.2009.07.039.

    Article  CAS  Google Scholar 

  • Killard, A. J., Zhang, S. Q., Zhao, H. J., John, R., Iwuoha, E. I., & Smyth, M. R. (1999). Development of an electrochemical flow injection immunoassay (FIIA) for the real-time monitoring of biospecific interactions. Analytica Chimica Acta, 400, 109–119. DOI: 10.1016/s0003-2670(99)00611-x.

    Article  CAS  Google Scholar 

  • Killard, A. J., Smyth, M. R., Grennan, K., Micheli, L., & Palleschi, G. (2000). Rapid antibody biosensor assays for environmental analysis. Biochemical Society Transactions, 28, 81–84. DOI: 10.1042/bst0280081.

    CAS  Google Scholar 

  • Killard, A. J., Micheli, L., Grennan, K., Franek, M., Kolar, V., Moscone, D., Palchetti, I., & Smyth, M. R. (2001). Amperometric separation-free immunosensor for real-time environmental monitoring. Analytica Chimica Acta, 427, 173–180. DOI: 10.1016/s0003-2670(00)01015-1.

    Article  CAS  Google Scholar 

  • Kim, Y. H., Kim, M. K., Oh, S. W., Jung, H. S., Kim, Y. J., Yoon, T. S., Kim, Y. S., & Lee, H. H. (2012). Organic memory device with polyaniline nanoparticles embedded as charging elements. Applied Physics Letters, 100, 163301. DOI: 10.1063/1.4704571.

    Article  Google Scholar 

  • Lenhart, N., Crowley, K., Killard, A. J., Smyth, M. R., & Morrin, A. (2011). Inkjet printable polyaniline-gold dispersions. Thin Solid Films, 519, 4351–4356. DOI: 10.1016/j.tsf.2011. 02.045.

    Article  CAS  Google Scholar 

  • Luo, X. L., Killard, A. J., Morrin, A., & Smyth, M. R. (2006). Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Analytica Chimica Acta, 575, 39–44. DOI: 10.1016/j.aca.2006.05.064.

    Article  CAS  Google Scholar 

  • Luo, X. L., Vidal, G. D., Killard, A. J., Morrin, A., & Smyth, M. R. (2007). Nanocauliflowers: A nanostructured polyaniline-modified screen-printed electrode with a self-assembled polystyrene template and its application in an amperometric enzyme biosensor. Electroanalysis, 19, 876–883. DOI: 10.1002/elan.200603791.

    Article  CAS  Google Scholar 

  • Määttänen, A., Fors, D., Wang, S. X., Valtakari, D., Ihalainen, P., & Peltonen, J. (2011). Paper-based planar reaction arrays for printed diagnostics. Sensors and Actuators B: Chemical, 160, 1404–1412 DOI: 10.1016/j.snb.2011.09.086.

    Article  Google Scholar 

  • Morrin, A., Guzman, A., Killard, A. J., Pingarron, J. M., & Smyth, M. R. (2003). Characterisation of horseradish peroxidase immobilisation on an electrochemical biosensor by colorimetric and amperometric techniques. Biosensors and Bioelectronics, 18, 715–720. DOI: 10.1016/s0956-5663(03)00003-4.

    Article  CAS  Google Scholar 

  • Morrin, A., Ngamna, O., Killard, A. J., Moulton, S. E., Smyth, M. R., & Wallace, G. G. (2005a). An amperometric enzyme biosensor fabricated from polyaniline nanoparticles. Electroanalysis, 17, 423–430. DOI: 10.1002/elan.200403185.

    Article  CAS  Google Scholar 

  • Morrin, A., Wilbeer, F., Ngamna, O., Moulton, S. E., Killard, A. J., Wallace, G. G., & Smyth, M. R. (2005b). Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles. Electrochemistry Communications, 7, 317–322. DOI: 10.1016/j.elecom.2005.01.014.

    Article  CAS  Google Scholar 

  • Morrin, A., Ngamna, O., O’Malley, E., Kent, N., Moulton, S. E., Wallace, G. G., Smyth, M. R., & Killard, A. J. (2008). The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. Electrochimica Acta, 53, 5092–5099. DOI: 10.1016/j.electacta.2008.02.010.

    Article  CAS  Google Scholar 

  • Moulton, S. E., Innis, P. C., Kane-Maguire, L. A. P., Ngamna, O., & Wallace, G. G. (2004). Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Current Applied Physics, 4, 402–406. DOI: 10.1016/j.cap.2003.11.059.

    Article  Google Scholar 

  • Mu, S. L., & Kan, J. Q. (2002). The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid. Synthetic Metals, 132, 29–33. DOI: 10.1016/s0379-6779(02)00209-6.

    Article  CAS  Google Scholar 

  • Muchindu, M., Iwuoha, E., Pool, E., West, N., Jahed, N., Baker, P., Waryo, T., & Williams, A. (2011). Electrochemical ochratoxin A immunosensor system developed on sulfonated polyaniline. Electroanalysis, 23, 122–128. DOI: 10.1002/elan.201000452.

    Article  CAS  Google Scholar 

  • Myler, S., Collyer, S. D., Davis, F., Gornall, D. D., & Higson, S. P. J. (2005). Sonochemically fabricated microelectrode arrays for biosensors: Part III. AC impedimetric study of aerobic and anaerobic response of alcohol oxidase within polyaniline. Biosensors and Bioelectronics, 21, 666–671. DOI: 10.1016/j.bios.2004.12.012.

    Article  CAS  Google Scholar 

  • Newman, J. D., Turner, A. P. F., & Marrazza, G. (1992). Ink-Jet printing for the fabrication of amperometric glucose biosensors. Analytica Chimica Acta, 262, 13–17. DOI: 10.1016/0003-2670(92)80002-o.

    Article  CAS  Google Scholar 

  • Newman, J. D., & Turner, A. P. F. (2005). Home blood glucose biosensors: a commercial perspective. Biosensors and Bioelectronics, 20, 2435–2453. DOI: 10.1016/j.bios.2004.11.012.

    Article  CAS  Google Scholar 

  • Ngamna, O., Morrin, A., Moulton, S. E., Killard, A. J., Smyth, M. R., & Wallace, G. G. (2005). An HRP based biosensor using sulphonated polyaniline. Synthetic Metals, 153, 185–188. DOI: 10.1016/j.synthmet.2005.07.259.

    Article  CAS  Google Scholar 

  • Ngamna, O., Morrin, A., Killard, A. J., Moulton, S. E., Smyth, M. R., & Wallace, G. G. (2007). Inkjet printable polyaniline nanoformulations. Langmuir, 23, 8569–8574. DOI: 10.1021/la700540g.

    Article  CAS  Google Scholar 

  • Nicolas-Debarnot, D., & Poncin-Epaillard, F. (2003). Polyaniline as a new sensitive layer for gas sensors. Analytica Chimica Acta, 475, 1–15. DOI: 10.1016/s0003-2670(02)01229-1.

    Article  CAS  Google Scholar 

  • Ohsaka, T., Ohnuki, Y., Oyama, N., Katagiri, G., & Kamisako, K. (1984). IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerisation of aniline. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 161, 399–405. DOI: 10.1016/0368-1874(84)83662-x.

    Article  CAS  Google Scholar 

  • Oliveira, M., Viswanathan, S., Morais, S., & Delerue-Matos, C. (2012). Development of polyaniline microarray electrodes for cadmium analysis. Chemical Papers, 66, 891–898. DOI: 10.2478/s11696-012-0175-x.

    CAS  Google Scholar 

  • Prathap, M. U. A., Chaurasia, A. K., Sawant, S. N., & Apte, S. K. (2012). Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Analytical Chemistry, 84, 6672–6678. DOI: 10.1021/ac301077d.

    Article  Google Scholar 

  • Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., & Piana, C. (2005). An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20, 2019–2026. DOI: 10.1016/j.bios.2004.09.022.

    Article  CAS  Google Scholar 

  • Setti, L., Fraleoni-Morgera, A., Mencarelli, I., Filippini, A., Ballarin, B., & Di Biase, M. (2007). An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sensors and Actuators B: Chemical, 126, 252–257. DOI: 10.1016/j.snb.2006.12.015.

    Article  CAS  Google Scholar 

  • Shirsat, M. D., Bangar, M. A., Deshusses, M. A., Myung, N. V., & Mulchandani, A. (2009). Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Applied Physics Letters, 94, 083502. DOI: 10.1063/1.3070237.

    Article  Google Scholar 

  • Spain, E., Kojima, R., Kaner, R. B., Wallace, G. G., O’Grady, J., Lacey, K., Barry, T., Keyes, T. E., & Forster, R. J. (2011). High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosensors and Bioelectronics, 26, 2613–2618. DOI: 10.1016/j.bios.2010.11.017.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions (IUPAC technical report). Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577050 815.

    Article  CAS  Google Scholar 

  • Subramanian, R., Crowley, K., Morrin, A., & Killard, A. J. (2013). A sensor probe for the continuous in situ monitoring of ammonia leakage in secondary refrigerant systems. Analytical Methods. DOI: 10.1039/c2ay25688f. (in press)

  • Suman, O’Reilly, E., Kelly, M., Morrin, A., Smyth, M. R., & Killard, A. J. (2011). Chronocoulometric determination of urea in human serum using an inkjet printed biosensor. Analytica Chimica Acta, 697, 98–102. DOI: 10.1016/j.aca.2011.04.036.

    Article  Google Scholar 

  • Trchová, M., Morávková, Z., Šeděnková I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6.

    Article  Google Scholar 

  • Trojanowicz, M., Geschke, O., Krawczyński vel Krawczyk, T., & Cammann, K. (1995). Biosensors based on oxidases immobilized in various conducting polymers. Sensors and Actuators B: Chemical, 28, 191–199. DOI: 10.1016/0925-4005(95)01724-0.

    Article  CAS  Google Scholar 

  • Virji, S., Fowler, J. D., Baker, C. O., Huang, J. X., Kaner, R. B., & Weiller, B. H. (2005). Polyaniline nanofiber composites with metal salts: Chemical sensors for hydrogen sulfide. Small, 1, 624–627. DOI: 10.1002/smll.200400155.

    Article  CAS  Google Scholar 

  • Virji, S., Kaner, R. B., & Weiller, B. H. (2006). Direct electrical measurement of the conversion of metal acetates to metal sulfides by hydrogen sulfide. Inorganic Chemistry, 45, 10467–10471. DOI: 10.1021/ic0607585.

    Article  CAS  Google Scholar 

  • Wallace, G. G., Spinks, G. M., Kane-Maguire, L. A. P., & Teasdale, P. R. (2003). Conductive electroactive polymers: Intelligent materials systems (2nd ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Wang, B. C., Tang, J. S., & Wang, F. S. (1986). The effect of anions of supporting electrolyte on the electrochemical polymerization of aniline and the properties of polyaniline. Synthetic Metals, 13, 329–334. DOI: 10.1016/0379-6779(86)90194-3.

    Article  CAS  Google Scholar 

  • Wang, G. Q., Xing, W., & Zhuo, S. P. (2012a). The production of polyaniline/graphene hybrids for use as a counter electrode in dye-sensitized solar cells. Electrochimica Acta, 66, 151–157. DOI: 10.1016/j.electacta.2012.01.088.

    Article  CAS  Google Scholar 

  • Wang, H., Yang, P. H., Cai, H. H., & Cai, J. (2012b). Constructions of polyaniline nanofiber-based electrochemical sensor for specific detection of nitrite and sensitive monitoring of ascorbic acid scavenging nitrite. Synthetic Metals, 162, 326–331. DOI: 10.1016/j.synthmet.2011.12.013.

    Article  CAS  Google Scholar 

  • Wei, J., Xiong, S. X., Bai, Y., Jia, P. T., Ma, J., & Lu, X. H. (2012). Polyaniline nanoparticles doped with star-like poly(styrene sulfonate): Synthesis and electrochromic properties. Solar Energy Materials and Solar Cells, 99, 141–147. DOI: 10.1016/j.solmat.2011.05.016.

    Article  CAS  Google Scholar 

  • Weng, B., Shepherd, R. L., Crowley, K., Killard, A. J., & Wallace, G. G. (2010). Printing conducting polymers. Analyst, 135, 2779–2789. DOI: 10.1039/c0an00302f.

    Article  CAS  Google Scholar 

  • Zhou, D. Z., Innis, P. C., Wallace, G. G., Shimizu, S. G., & Maeda, S. I. (2000). Electrosynthesis and characterisation of poly(2-methoxyaniline-5-sulfonic acid)-effect of pH control. Synthetic Metals, 114, 287–293. DOI: 10.1016/s0379-6779(00)00249-6.

    Article  CAS  Google Scholar 

  • Zotti, G., Cattarin, S., & Comisso, N. (1988). Cyclic potential sweep electropolymerization of aniline: The role of anions in the polymerization mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 239, 387–396. DOI: 10.1016/0022-0728(88)80293-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aoife Morrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowley, K., Smyth, M.R., Killard, A.J. et al. Printing polyaniline for sensor applications. Chem. Pap. 67, 771–780 (2013). https://doi.org/10.2478/s11696-012-0301-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0301-9

Keywords

Navigation