Skip to main content

Advertisement

Log in

Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) has many applications in medicine as a biocompatible and bioactive biomaterial. Numerous studies have shown that modification of the HA surface can improve its biological and chemical properties. However, little is known about the surface properties of modified materials. In this paper the influence of organic polymers: polyethylene glycol (PEG) and polyhydroxyethyl methacrylate (pHEMA) on the surface properties and surface chemistry of hydroxyapatite (HA) is presented. The surface properties of modified HA were characterised by the FT-IR, XPS, BET, and zeta potential measurements. Specific surface area was determined by BET. Infrared and XPS spectra confirmed the presence of PEG and pHEMA on the surface of HA. The BET N2 adsorption revealed slight changes in the HA surface chemistry after grafting modification. The surface chemical properties of the HA were considered to be based on the zeta potential. The decrease in zeta potential results in the increasing stability of the modified material and also in the reduction of bacterial adhesion. The reaction for surface modification of HA is proposed and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arakaki, M., Yamashita, S., Mutaf, M., Naito, S., & Fuji, T. (1995). Onlay silicone and hydroxyapatite-tricalciumphosphate composite (HAP-TCP) blocks interfere with nasal bone growth in rabbits. The Cleft Palate-Craniofacial Journal, 32, 282–289. DOI: 10.1597/1545-1569(1995)032〈0282:OSAHTC〉2.3.CO;2.

    Article  CAS  Google Scholar 

  • Ciobanu, C. S., Andronescu, E., Stoicu, A., Florea, O., Le Coustumer, P., Galaup, S., Djouandi, A., Mevellec, J. Y., Musa, I., Massuyeau, F., Prodan, A. M., Lafdi, K., Trusca, R., Pasuk, I., & Predoi, D. (2011). Influence of annealing treatment of nano-hydroxyapatite bioceramics on the vibrational properties. Digest Journal of Nanomaterials and Biostructures, 6, 609–624.

    Google Scholar 

  • Costescu, A., Pasuk, I., Ungureanu, F., Dinischiotu, A., Costache, M., Huneau, F., Galaup, S., Le Coustumer, P., & Predoi, D. (2010). Physico-chemical properties of nanosized hexagonal hydroxyapatite powder synthesized by solgel, Digest Journal of Nanomaterials and Biostructures, 5, 989–1000.

    Google Scholar 

  • D’Andrea, S. C., & Fadeev, A. Y. (2003). Covalent surface modification of calcium hydroxyapatite using n-alkyl and n-fluoroalkylphosphonic acid. Langmuir, 19, 7904–7910. DOI: 10.1021/la027000s.

    Article  Google Scholar 

  • Groth, T., Liu, Z. M., Niepel, M., Peschel, D., Kirchhof, K., Altankov, G., & Faucheux, N. (2010). Chemical and physical modifications of biomaterial surfaces to control adhesion of cells (Chapter 13, pp. 253–284). In V. P. Shastri, G. Altankov, & A. Lendlein (Eds.), Advances in regenerative medicine: Role of nanotechnology and engineering principles. Dordrecht, The Netherlands: Springer. DOI: 10.1007/978-90-481-8790-4 13.

    Chapter  Google Scholar 

  • Hong, Z. K., Qiu, X. Y., Sun, J. R., Deng, M. X., Chen, X. S., & Jing, X. B. (2004). Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer, 45, 6699–6706. DOI: 10.1016/j.polymer.2004.07.036.

    Article  CAS  Google Scholar 

  • Houghton, R. P., & Mulvaney, A. W. (1996). Mechanism of tin(IV)-catalysed urethane formation. Journal of Organometallic Chemistry, 518, 21–27. DOI: 10.1016/0022-328x(96)06223-7.

    Article  CAS  Google Scholar 

  • Jenny, C. R., & Anderson, J. M. (1999). Effects of surfacecoupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. Journal of Biomedical Materials Research, 44, 206–216. DOI: 10.1002/(SICI)1097-4636(199902)44:2〈206::AID-JBM11〉3.0.CO;2-D.

    Article  Google Scholar 

  • Kinnari, T. J., Esteban, J., Martin-de-Hijas, N. Z., Sánchez-Muñoz, O., Sánchez-Salcedo, S., Colilla, M., Vallet-Regí, M., & Gomez-Barrena, E. (2009). Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics. Journal of Medical Microbiology, 58, 132–137. DOI: 10.1099/jmm.0.002758-0.

    Article  CAS  Google Scholar 

  • Kłodzińska, E., Szumski, M., Dziubakiewicz, E., Hrynkiewicz, K., Skwarek, E., Janusz, W., & Buszewski, B. (2010). Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis, 31, 1590–1596. DOI: 10.1002/elps.200900559.

    Article  Google Scholar 

  • Liu, Q., de Wijn, J. R., & van Blitterswijk, C. A. (1998a). Covalent bonding of PMMA, PBMA, and poly(HEMA) to hydroxyapatite particles. Journal of Biomedical Materials Research, 40, 257–263. DOI: 10.1002/(SICI)1097-4636(199805)40:2〈257::AID-JBM10〉3.0.CO;2-J.

    Article  CAS  Google Scholar 

  • Liu, Q., de Wijn, J. R., & van Blitterswijk, C. A. (1998b). A study on the grafting reaction of isocyanates with hydroxyapatite particles. Journal of Biomedical Materials Research, 40, 358–364. DOI: 10.1002/(SICI)1097-4636(19980605)40:3⋆358::AID-JBM3〉3.0.CO;2-E.

    Article  CAS  Google Scholar 

  • Liu, Q., de Wijn, J. R., de Groot, K., & van Blitterswijk, C. A. (1998c). Surface modification of nano-apatite by grafting organic polymer. Biomaterials, 19, 1067–1072. DOI: 10.1016/s0142-9612(98)00033-7.

    Article  CAS  Google Scholar 

  • Luo, S. G., Tan, H. M., Zhang, J. G., Wu, Y. J., Pei, F. K., & Meng, X. H. (1997). Catalytic mechanisms of triphenyl bismuth, dibutyltin dilaurate, and their combination in polyurethane-forming reaction. Journal of Applied Polymer Science, 65, 1217–1225. DOI: 10.1002/(SICI)1097-4628(19970808)65:6〈1217::AID-APP17〉3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  • Lu, H. B., Campbell, Ch. T., Graham, D. J., & Ratner, B. D. (2000). Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Analytical Chemistry, 72, 2886–2894. DOI: 10.1021/ac990812h.

    Article  CAS  Google Scholar 

  • Park, J. B., & Bronzino, J. D. (Eds.) (2003). Biomaterials: Principles and applications. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Qiu, C. F., Xiao, X. F., & Liu, R. F. (2008). Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol. Ceramics International, 34, 1747–1751. DOI: 10.1016/j.ceramint.2007.06.001.

    Article  CAS  Google Scholar 

  • Salarian, M., Solati-Hashjin, M., Shafiei, S. S., Salarian, R., & Nemati, Z. A. (2009). Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol. Ceramics International, 35, 2563–2569. DOI: 10.1016/j.ceramint.2009.02.031.

    Article  CAS  Google Scholar 

  • Shi, D. L. (Ed.) (2004). Biomaterials and tissue engineering. Berlin, Germany: Springer.

    Google Scholar 

  • Shinto, Y., Uchida, A., Korkusuz, F., Araki, N., & Ono, K. (1992). Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. The Journal of Bone & Joint Surgery, British Volume, 74, 600–604.

    CAS  Google Scholar 

  • Siddharthan, A., Seshadri, S. K., & Sampath Kumar, T. S. (2005). Rapid synthesis of calcium deficient hydroxyapatite nanoparticles by microwave irradiation. Trends in Biomaterials and Artificial Organs, 18, 110–113.

    Google Scholar 

  • Tanaka, H., Watanabe, T., Chikazawa, M., Kandori, K., & Ishikawa, T. (1998). Surface structure and properties of calcium hydroxyapatite modified by hexamethyldisilazane. Journal of Colloid and Interface Science, 206, 205–211. DOI: 10.1006/jcis.1998.5634.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzanna Okulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamska, K., Szubert, M., Voelkel, A. et al. Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting. Chem. Pap. 67, 429–436 (2013). https://doi.org/10.2478/s11696-012-0297-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0297-1

Keywords

Navigation