Skip to main content
Log in

Model predictive control-based robust stabilization of a chemical reactor

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The paper addresses an approach to robust stabilization of chemical continuous stirred tank reactors. State feedback was used for the stabilization and the feedback controller was designed using the robust model-based predictive control algorithm in which the symmetric constraints on input and output variables are taken into account. The known strategy was modified by adding integral action to the controller. Parameters of robust feedback controllers with and without integral action were found as solutions of a constrained optimization problem solved on the infinite prediction horizon. The possibility to stabilize chemical reactors with uncertainty using the robust model-based predictive control has been verified by simulations and compared with the optimal linear quadratic control and the model-based predictive control. The obtained results confirm that the robust model-based predictive control provides better results than other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez-Ramirez, J., & Femat, R. (1999). Robust PI stabilization of a class of chemical reactors. Systems & Control Letters, 38, 219–225. DOI: 10.1016/s0167-6911(99)00057-2.

    Article  Google Scholar 

  • Bakošová, M., Puna, D., & Mészáros, A. (2006). Control of a continuous-time stirred tank reactor via robust static output feedback. In Proceedings of the 14th IEEE Mediterranean Conference on Control and Automation, June 28–30, 2006 (pp. 1–6). Ancona, Italy: Università Politecnica delle Marche. DOI: 10.1109/MED.2006.328854.

    Google Scholar 

  • Bakošová, M., Puna, D., Dostál, D., & Závacká, J. (2009). Robust stabilization of a chemical reactor. Chemical Papers, 63, 527–536. DOI: 10.2478/s11696-009-0046-2.

    Article  Google Scholar 

  • Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38, 407–427. DOI: 10.1016/s0005-1098(01)00174-1.

    Article  Google Scholar 

  • Boyd, S., El-Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia, PA, USA: SIAM.

    Book  Google Scholar 

  • Di Ciccio, M. P., Bottini, M., Pepe, P., & Foscolo, P. U. (2011). Observer-based nonlinear control law for a continuous stirred tank reactor with recycle. Chemical Engineering Science, 66, 4780–4797. DOI: 10.1016/j.ces.2011.06.038.

    Article  Google Scholar 

  • Ding, B. (2010). Constrained robust model predictive control via parameter-dependent dynamic output feedback. Automatica, 46, 1517–1523. DOI: 10.1016/j.automatica.2010.06.14.

    Article  Google Scholar 

  • Favache, A., & Dochain, D. (2010). Power-shaping control of reaction systems: The CSTR case. Automatica, 46, 1877–1883. DOI: 10.1016/j.automatica.2010.07.011.

    Article  Google Scholar 

  • Flores-Tlacuahuac, A., Alvarez, J., Saldívar-Guerra, E., & Oaxaca, G. (2005). Optimal transition and robust control design for exothermic continuous reactors. AIChE Journal, 51, 895–908. DOI: 10.1002/aic.10345.

    Article  CAS  Google Scholar 

  • Gerhard, J., Mönningmann, M., & Marquardt, W. (2004). Robust stable nonlinear control and design of a CSTR in a large operating range. In Proceedings of the 7th International Symposium on Dynamics and Control of Process Systems, July 5–7, 2004 (pp. 92-1–92-6). Cambridge, MA, USA: International Federation of Automatic Control.

    Google Scholar 

  • Graichen, K., Hagenmeyer, V., & Zeitz, M. (2009). Design of adaptive feedforward control under input constraints for a benchmark CSTR based on a BVP solver. Computers & Chemical Engineering, 33, 473–483. DOI: 10.1016/j.compchemeng.2008.11.002.

    Article  CAS  Google Scholar 

  • Hoag, H., Couenne, F., Jallut, C., & Le Gorrec, Y. (2011). The port Hamiltonian approach to modelling and control of Continuous Stirred Tank Reactors. Journal of Process Control, 21, 1449–1458, DOI: 10.1016/j.jprocont.2011.06.014.

    Article  Google Scholar 

  • Kothare, M. V., Balakrishnan, V., & Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32, 1361–1379. DOI: 10.1016/0005-1098(96)00063-5.

    Article  Google Scholar 

  • Kvasnica, M., Herceg, M., Čirka, Ľ., & Fikar, M. (2010). Model predictive control of a CSTR: A hybrid modeling approach. Chemical Papers, 64, 301–309. DOI: 10.2478/s11696-010-0008-8.

    Article  CAS  Google Scholar 

  • Löfberg, J. (2004). YALMIP: A toolbox for modelling and optimization in Matlab. In Proceedings of the CACSD Conference, September 24, 2004 (pp. 284–289). Taipei, Taiwan: TC-CACSD.

    Google Scholar 

  • Luyben, W. L. (2007). Chemical reactor design and control. Hoboken, NJ, USA: Wiley-Interscience.

    Book  Google Scholar 

  • MathWorks (2012). Linear-quadratic (LQ) state-feedback regulator for discrete-time state-space system. Documentation Center. Retrieved October 2, 2012, from www.mathworks.com/help/control/ref/dlqr.html

  • Mikleš, J., & Fikar, M. (2007). Process modelling, identification, and control. Berlin, Germany: Springer.

    Google Scholar 

  • Molnár, A., Markoš, J., & Jelemensky, Ľ. (2002). Accuracy of mathematical model with regard to safety analysis of chemical reactors. Chemical Papers, 56, 357–361.

    Google Scholar 

  • Pólik, I. (2010). Addendum to the SeDuMi user guide, version 1.1. Retrieved October 2, 2012, from http://sedumi.ie.lehigh.edu/

  • Puna, D., & Bakošová, M. (2007). Robust PI controller design for a CSTR with uncertainties. In Proceedings of the 34th International Conference of SSCHE, May 21–25, 2007 (pp. 043-1–043-10). Tatranské Matliare, Slovakia: SSCHE.

    Google Scholar 

  • Sarhadi, P., Salahshoor, K., & Khaki-Sedigh, A. (2012). Robustness analysis and tuning of generalized predictive control using frequency domain approaches. Applied Mathematical Modelling, 36, 6167–6185. DOI: 10.1016/j.apm.2012.02.006.

    Article  Google Scholar 

  • Zabiri, H., & Samyudia, Y. (2006). A hybrid formulation and design of model predictive control for systems under actuator saturation and backlash. Journal of Process Control, 16, 693–709. DOI: 10.1016/j.proccont.2006.01.003.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Kostyukova, O., & Chong, K. T. (2011). A new time-discretization for delay multiple-input nonlinear systems using the Taylor method and first order hold. Discrete Applied Mathematics, 159, 924–938. DOI: 10.1016/j.dam.2011.01.022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Bakošová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakošová, M., Oravec, J. & Matejičková, K. Model predictive control-based robust stabilization of a chemical reactor. Chem. Pap. 67, 1146–1156 (2013). https://doi.org/10.2478/s11696-012-0296-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0296-2

Keywords

Navigation