Skip to main content
Log in

Design calculations of an extractor for aromatic and aliphatic hydrocarbons separation using ionic liquids

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The study concentrates on the separation of aromatic hydrocarbons from aliphatic hydrocarbon mixtures using ionic liquids as a new alternative of extraction solvents. Influence of the phase equilibrium description accuracy on the separation equipment design using different thermodynamic models was investigated. As a model system, a heptane-toluene binary mixture was chosen, employing 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) ionic liquid as an extractive solvent. Liquid-liquid equilibrium (LLE) data of the ternary system were calculated using NRTL equations with different quality model parameters. Model 1 corresponds to the NRTL equation with the original binary parameters evaluated independently from the respective binary equilibrium data. Model 2 is represented by an NRTL equation extended by the ternary correction term (with the original binary parameters and ternary correction term parameters evaluated from the ternary tie-lines). Model 3, i.e. the NRTL equation with binary model parameters determined via ternary LLE data regression using ASPEN Plus, was taken from Meindersma et al. (2006). Continuous-flow liquidphase extraction was simulated considering a cascade of mixer-settler type extractors according to the Hunter-Nash scheme (Hunter & Nash, 1934). Based on the simulation results, for a preset separation efficiency criterium, different accuracies of the equilibrium description caused serious discrepancies in the separation equipment design, e.g. in the number of theoretical stages, solvent to feed ratio, and product purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, S. H., Lababidi, H. M. S., Merchant, S. Q., & Fahim, M. A. (2003). Extraction of aromatics from naphtha reformate using propylene carbonate. Fluid Phase Equilibria, 214, 25–38. DOI: 10.1016/s0378-3812(03)00323-6.

    Article  CAS  Google Scholar 

  • Arce, A., Earle, M. J., Katdare, S. P., Rodriguez, H., & Seddon, K. R. (2007). Phase equilibria of mixtures of mutually immiscible ionic liquids. Fluid Phase Equilibria, 261, 427–433. DOI: 10.1016/j.fluid.2007.06.017.

    Article  CAS  Google Scholar 

  • Aznar, M. (2007). Correlation of (liquid + liquid) equilibrium of systems including ionic liquids. Brazilian Journal of Chemical Engineering, 24, 143–149. DOI: 10.1590/s0104-66322007000100013.

    Article  CAS  Google Scholar 

  • Bendova, M., & Wagner, Z. (2009). Thermodynamic description of liquid-liquid equilibria in systems 1-ethyl-3-methylimidazolium ethylsulfate + C7-hydrocarbons by polymer-solution models. Fluid Phase Equilibria, 284, 80–85. DOI: 10.1016/j.fluid.2009.06.014.

    Article  CAS  Google Scholar 

  • Blažek, J., & Rabl, V. (2006). Základy zpracování a využití ropy (2nd ed.). Prague, Czech Republic: VŠCHT.

    Google Scholar 

  • Chan, C., & Song, Y. H. (2004). Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE Journal, 50, 1928–1941. DOI: 10.1002/aic.10151.

    Article  Google Scholar 

  • Chen, C. C., Britt, H. I., Boston, J. F., & Evans, L. B. (1982). Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte system. AIChE Journal, 28, 588–596. DOI: 10.1002/aic.690280410.

    Article  CAS  Google Scholar 

  • Choi, Y. J., Cho, K. W., Cho, B. W., & Yeo, Y. K. (2002). Optimization of the sulfolane extraction plant based on modeling and simulation. Industrial & Engineering Chemistry Research, 41, 5504–5509. DOI: 10.1021/ie010435a.

    Article  CAS  Google Scholar 

  • Domańska, U., Laskowska, M., & Marciniak, A. (2008). Phase equilibria of (1-ethyl-3-methylimidazolium ethylsulfate + hydrocarbon, + ketone, and + ether) binary systems. Journal of Chemical & Engineering Data, 53, 498–502. DOI: 10.1021/je700591h.

    Article  Google Scholar 

  • Garcia, J., Torrecilla, J. S., Fernandez, A., Oliet, M., & Rodriguez, F. (2010). (Liquid + liquid) equilibria in the binary systems (aliphatic, or aromatic hydrocarbons + 1-ethyl-3-methylimidazolium ethylsulfate, or 1-butyl-3-methylimidazolium methylsulfate ionic liquids). The Journal of Chemical Thermodynamics, 42, 144–150. DOI: 10.1016/j.jct.2009.07.023.

    Article  CAS  Google Scholar 

  • Gmehling, J., & Krummen, M. (2003). German Patent DE101 54052 DE. Munich, Germany: German Patent and Trade Mark Office.

    Google Scholar 

  • Gonzalez, E. J., Calvar, N., Gomez, E., & Dominguez, A. (2010). Separation of benzene from linear alkanes (C6-C9) using 1-ethyl-3-methylimidazolium ethylsulfate at T = 298.15 K. Journal of Chemical & Engineering Data, 55, 3422–3427. DOI: 10.1021/je1001544.

    Article  CAS  Google Scholar 

  • Hansmeier, A. R., Jongsmans, M., Meindersma, G. W., & de Haan, A. B. (2010). LLE data for the ionic liquid 3-methyl-N-butyl pyridinium dicyanamide with several aromatic and aliphatic hydrocarbons. The Journal of Chemical Thermodynamics, 42, 484–490. DOI: 10.1016/j.jct.2009.11.001.

    Article  CAS  Google Scholar 

  • Hanusek, J. (2005). Iontove kapaliny — nový směr v “zelene” chemii. Chemické Listy, 99, 263–294.

    Google Scholar 

  • Hendricks, E., Kontogeorgis, G. M., Dohrn, R., de Hemptinne, J. C., Economou, I. G., Fele Žilnik, L., & Vesovic, V. (2010). Industrial requirements for thermodynamics and transport properties. Industrial & Engineering Chemistry Research, 49, 11131–11141. DOI: 10.1021/ie101231b.

    Article  Google Scholar 

  • Huddleston, J. G., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for’ clean’ liquid-liquid extraction. Chemical Communications, 1998, 1765–1766. DOI: 10.1039/a803999b.

    Article  Google Scholar 

  • Hunter, T. G., & Nash, A. W. (1934). The application of physico-chemical principles to the design of liquid-liquid contact equipment. Part II: Application of phase-rule graphical method. Journal of the Society of Chemical Industry, 53, 95T–102T. DOI: 10.1002/jctb.5000531407.

    Article  Google Scholar 

  • Krishna, R., Goswami, A. N., Nanoti, S. M., Rawat, B. S., Khanna, M. K., & Dobhal, J. (1987). Extraction of aromatics from 63–69°C naphtha fraction for food grade hexane production using sulfolane and NMP as solvents. Indian Journal of Chemical Technology, 25, 602–606.

    CAS  Google Scholar 

  • Krummen, M., Wasserchied, P., & Gmehling, J. (2002). Measurement of activity coeffitients at infinite dilution in ionic liquids using the dilutor technique. Journal of Chemical & Engineering Data, 47, 1411–1417. DOI: 10.1021/je0200517.

    Article  CAS  Google Scholar 

  • Meindersma, G. W. (2005). From solvent development to pilot RDC evaluation: Extraction of aromatics from naphtha with ionic liquids. PhD. thesis, University of Twente, Enschede, The Netherlands.

    Google Scholar 

  • Meindersma, G. W., Podt, A. J. G., & de Haan, A. B. (2006). Ternary liquid-liquid equilibria for mixtures of toluene + nheptane + an ionic liquid. Fluid Phase Equilibria, 247, 158–168. DOI: 10.1016/j.fluid.2006.07.002.

    Article  CAS  Google Scholar 

  • Meindersma, G. W., & de Haan, A. B. (2008). Conceptual process design for aromatic/aliphatic separation with ionic liquids. Chemical Engineering Research and Design, 86, 745–752. DOI: 10.1016/j.cherd.2008.02.016.

    Article  CAS  Google Scholar 

  • Pereiro, A. B., Deive, F. J., Esperança, J. M. S. S., & Rodriguez, A. (2010). Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilibria, 294, 49–53. DOI: 10.1016/j.fluid.2010.05.006.

    Article  CAS  Google Scholar 

  • Perreiro, A. B., Araujo, J. M. M., Esperança, J. M. M. S., Marrucho, I. M., & Rebelo, L. P. N. (2012). Ionic liquids in separations of azeotropic systems — A review. The Journal of Chemical Thermodynamics, 46, 2–28. DOI: 10.1016/j.jct.2011.05.026.

    Article  Google Scholar 

  • Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 14, 135–144. DOI: 10.1002/aic.690140124.

    Article  CAS  Google Scholar 

  • Schnieder, D. F. (2004). Avoid sulfolane regeneration problems. Chemical Engineering Progress, 100(7), 34–39.

    Google Scholar 

  • Seiler, M., Jork, C., Kavarnou, A., Arlt, W., & Hirsch, R. (2004). Separation of azeotropic mixtures using hyperbranched polymers or iononic liquids. AIChE Journal, 50, 2439–2454. DOI: 10.1002/aic.10249.

    Article  CAS  Google Scholar 

  • Simoni, L. D., Lin, Y. D., Brennecke, J. F., & Stadtherr, M. A. (2008). Modeling liquid-liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC. Industrial & Engineering Chemistry Research, 47, 256–272. DOI: 10.1021/ie070956j.

    Article  CAS  Google Scholar 

  • Sorensen, J. M., & Arlt, W. (1980a). Liquid-liquid equilibrium data collection. (DECHEMA Chemistry data series, Vol. V, Part 2. Ternary systems). Frankfurt/Main, Germany: DECHEMA.

    Google Scholar 

  • Sorensen, J. M., & Arlt, W. (1980b). Liquid-liquid equilibrium data collection. (DECHEMA Chemistry data series, Vol. V, Part 3. Ternary and quaternary systems). Frankfurt/Main, Germany: DECHEMA.

    Google Scholar 

  • Steltenpohl, P., & Graczova, E. (2010). Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description. Chemical Papers, 64, 310–317. DOI: 10.2478/s11696-010-0006-x.

    Article  CAS  Google Scholar 

  • Sumartschenkowa, I. A., Verevkin, S. P., Vasiltsova, T. V., Bich, E., Heintz, A., Shevelyova, M. P., & Kabo, G. J. (2006). Experimental study of thermodynamic properties of mixtures containing ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate using gas-liquid chromatography and transpiration method. Journal of Chemical & Engineering Data, 51, 2138–2144. DOI: 10.1021/je0602723.

    Article  CAS  Google Scholar 

  • Surovy, J., Dojčansky, J., & Bafrncova, S. (1982). The calculation of ternary liquid-liquid (L-L) equilibrium data using a ternary correction to the excess Gibbs free energy. Collection of Czechoslovak Chemical Communications, 47, 2380–2392. DOI: 10.1135/cccc19822380.

    Article  CAS  Google Scholar 

  • Varma, N. R., Ramalingam, A., & Banerjee, T. (2011). Experiments, correlations and COSMO-RS predictions for the extraction of benzothiophene from n-hexane using imidazolium-based ionic liquids. Chemical Engineering Journal, 166, 30–39. DOI: 10.1016/j.cej.2010.09.015.

    Article  CAS  Google Scholar 

  • Wauquier, J. P. (2000). Petroleum refining 2: Separation processes. Paris, France: Èditions Technip.

    Google Scholar 

  • Weissermel, K., & Arpe, H. J. (2003). Industrial organic chemistry (4th ed., pp. 313–336). Weinheim, Germany: Wiley-VCH.

    Book  Google Scholar 

  • Yorulmaz, Y., & Karpuczu, F. (1985). Sulfolane versus diethylene glycol in recovery of aromatics. Chemical Engineering Research and Design, 63, 184–190.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Graczová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graczová, E., Steltenpohl, P., Šoltýs, M. et al. Design calculations of an extractor for aromatic and aliphatic hydrocarbons separation using ionic liquids. Chem. Pap. 67, 1548–1559 (2013). https://doi.org/10.2478/s11696-012-0289-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0289-1

Keywords

Navigation