Chemical Papers

, Volume 67, Issue 3, pp 292–299 | Cite as

Effects of enzymes and hydrocolloids on physical, sensory, and shelf-life properties of wheat bread

  • Ľubomír MikušEmail author
  • Mária Kováčová
  • Ladislav Dodok
  • Alžbeta Medveďová
  • Lucia Mikušová
  • Ernest Šturdík
Original Paper


This study compares two types of enzymes: maltogenic amylase (Novamyl 10000 BG) and lipase (Lipopan F BG, Lipopan Xtra BG), both separately and in combination, and seven hydrocolloids (guar gum, xanthan gum, carrageenan, β-glucan, carob gum, and carboxymethyl cellulose (CMC)) on the physical and sensory properties of a bakery product (white wheat bread). Their effect was observed on the baking characteristics of volume, specific volume, shape, mass, shelf-life (penetration and water activity test), and overall taste. The best results in shelf-life extension from the hydrocolloids were shown by β-glucan, a combination of xanthan gum + carrageenan and guar gum. From the enzymes, the best results were achieved with Lipopan Xtra BG and Novamyl 10000 BG + Lipopan F BG combination. The sensory properties (e.g. taste, colour, shape, aroma, elasticity, hardness) were evaluated by ten trained panellists, holding certification in sensory analysis. β-Glucan and Novamyl 10000 BG + Lipopan F BG combination increased the bread volume significantly and also were deemed to afford the most favourable taste.


enzyme hydrocolloid shelf-life sensory properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AACC (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). St. Paul, MN, USA: AACC Press.Google Scholar
  2. Andronic, D., Bulancea, M., Dabija, A., & Miron, A. (2007). Researches concerning the influence of some commercial enzymatic preparats over the quality of frozen sheet dough. Journal of Agroalimentary Processes and Technologies, 13, 381–386.Google Scholar
  3. Caballero, P. A., Gómez, M., & Rosell, C. M. (2007). Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 81, 42–53. DOI: 10.1016/j.jfoodeng.2006.10.007.CrossRefGoogle Scholar
  4. Christiansen, L., Vind, J., Borch, K., & Heldt-Hansen, H. (2003). Generation of lipases with different specificities and functionalities in breadmaking. In C. M. Courtin, V. S. Veraverbeke, & J. A. Delcour (Eds.), Proceedings of the Third European Symposium on Enzymes in Grain Processing: Recent Advances in Enzymes in Grain Processing (pp. 269–274). Leuven, Belgium: Katholieke Universiteit Leuven.Google Scholar
  5. Frank, P. (2008). Fresh-keeping technology builds brand equity. Baking Management (Issue November 1, 2008). Retrieved from
  6. Frost & Sullivan (2004). Bakery enzymes: The volume enhancers in the food enzyme industry. Retrieved from
  7. Gray, J. A., & Bemiller, J. N. (2003). Bread staling: Molecular basis and control. Comprehensive Reviews in Food Science and Food Safety, 2, 1–21. DOI: 10.1111/j.1541-4337.2003.tb00011.x.CrossRefGoogle Scholar
  8. Grosch, W., & Wieser, H. (1999). Redox reactions in wheat dough as affected by ascorbic acid. Journal of Cereal Science, 29, 1–16. DOI: 10.1006/jcrs.1998.0218.CrossRefGoogle Scholar
  9. Guarda, A., Rosell, C. M., Benedito, C., & Galotto, M. J. (2004). Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocolloids, 18, 241–247. DOI: 10.1016/s0268-005x(03)00080-8.CrossRefGoogle Scholar
  10. Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: An overview. Applied Biochemistry and Biotechnology, 118, 155–170. DOI: 10.1385/abab:118:1-3:155.CrossRefGoogle Scholar
  11. Kohajdová, Z., & Karovičová, J. (2008). Influence of hydrocolloids on quality of baked goods. Acta Scientiarum Polonorum, Technologia Alimentaria, 7, 43–49.Google Scholar
  12. Kohajdová, Z., & Karovičová, J. (2010). Impact of potassium iodate on the quality of wheat-spelt baked goods. Acta Scientiarum Polonorum, Technologia Alimentaria, 9, 443–450.Google Scholar
  13. Mandala, I., Karabela, D., & Kostaropoulos, A. (2007). Physical properties of breads containing hydrocolloids stored at low temperature. I. Effect of chilling. Food Hydrocolloids, 21, 1397–1406. DOI: 10.1016/j.foodhyd.2006.11.007.CrossRefGoogle Scholar
  14. Mikuš, Ł., Kocková, M., Dodok, L., & Kováčová, M. (2011a). Application of selected enzymes to improve shelf-life and rheological properties of bakery products. In D. Koceva Komlenić (Ed.), Book of Abstracts of the 6th International Congress FLOUR-BREAD’ 11, October 12–14, 2011 (pp. 66). Osijek, Croatia: University of Osijek.Google Scholar
  15. Mikuš, Ł., Valík, Ł., & Dodok, L. (2011b). Usage of hydrocolloids in cereal technology. Acta Universitatis Agriculturae et Silviculturae Mendeleianae Brunensis, 59, 325–333.Google Scholar
  16. Moayedallaie, S., Mirzaei, M., & Paterson, J. (2010). Bread improvers: Comparison of a range of lipases with a traditional emulsifier. Food Chemistry, 122, 495–499. DOI: 10.1016/j.foodchem.2009.10.033.CrossRefGoogle Scholar
  17. Mondal, A., & Datta, A. K. (2008). Bread baking — A review. Journal of Food Engineering, 86, 465–474. DOI: 10.1016/j.jfoodeng.2007.11.014.CrossRefGoogle Scholar
  18. Novasina AG (1999). Novasina AW Sprint for measuring water activity. Pfäffikon, Switzerland: Novasina Axair.Google Scholar
  19. Phillips, G. O., & Williams, P. A. (Eds.) (2000). Handbook of hydrocolloids. Cambridge, UK: Woodhead Publishing Limited.Google Scholar
  20. Primo-Martín, C., Hamer, R. J., & de Jongh, H. H. J. (2006). Surface layer properties of dough liquor components: Are they key parameters in gas retention in bread dough? Food Biophysics, 1, 83–93. DOI: 10.1007/s11483-006-9008-1.CrossRefGoogle Scholar
  21. Purhagen, J. K., Sjöö, M. E., & Eliasson, A. C. (2011). Starch affecting anti-staling agents and their function in freestanding and pan-baked bread. Food Hydrocolloids, 25, 1656–1666. DOI: 10.1016/j.foodhyd.2011.03.004CrossRefGoogle Scholar
  22. Renard, A. C. (1996). Ultra-fresh yoghurt or dessert. Revue Laiti`ere Fran?caise, 555, 12–14.Google Scholar
  23. Ribotta, P. D., Pérez, G. T., León, A. E., & Añón, M. C. (2004). Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough. Food Hydrocolloids, 18, 305–313. DOI: 10.1016/s0268-005x(03) 00086-9.CrossRefGoogle Scholar
  24. Rogers, D. E., Zeleznak, K. J., Lai, C. S., & Hoseney, R. C. (1988). Effect of native lipids, shortening, and bread moisture on bread firming. Cereal Chemistry, 65, 398–401.Google Scholar
  25. Rollet, B. (1995). Stabilizers for dairy desserts: Interesting synergism. Revue Laiti`ere Française, 555, 22–23.Google Scholar
  26. Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15, 75–81. DOI: 10.1016/s0268-005x(00)00054-0.CrossRefGoogle Scholar
  27. Sanz Penella, J. M., Collar, C., & Haros, M. (2008). Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. Journal of Cereal Science, 48, 715–721. DOI: 10.1016/j.jcs.2008.03.006.CrossRefGoogle Scholar
  28. Shittu, T. A., Aminu, R. A., & Abulude, E. O. (2009). Functional effects of xanthan gum on composite cassava-wheat dough and bread. Food Hydrocolloids, 23, 2254–2260. DOI: 10.1016/j.foodhyd.2009.05.016.CrossRefGoogle Scholar
  29. Skendi, A., Papageorgiou, M., & Biliaderis, C. G. (2009). Effect of barley β-glucan molecular size and level on wheat dough rheological properties. Journal of Food Engineering, 91, 594–601. DOI: 10.1016/j.jfoodeng.2008.10.009.CrossRefGoogle Scholar
  30. Skendi, A., Biliaderis, C. G., Papageorgiou, M., & Izydorczyk, M. S. (2010). Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chemistry, 119, 1159–1167. DOI: 10.1016/j.foodchem.2009.08.030.CrossRefGoogle Scholar
  31. Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23, 849–855. DOI: 10.1016/j.foodhyd.2008.03.016.CrossRefGoogle Scholar
  32. Stojceska, V., & Ainsworth, P. (2008). The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chemistry, 110, 865–872. DOI: 10.1016/j.foodchem.2008.02.074.CrossRefGoogle Scholar
  33. van der Maarel, M. J. E. C, van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–155. DOI: 10.1016/s0168-1656(01)00407-2.CrossRefGoogle Scholar
  34. Wagner, M. J., Lucas, T., Le Ray, D., & Trystram, G. (2007). Water transport in bread during baking. Journal of Food Engineering, 78, 1167–1173. DOI: 10.1016/j.jfoodeng.2005.12.029.CrossRefGoogle Scholar
  35. Wang, X., Choi, S. G., & Kerr, W. L. (2004). Water dynamics in white bread and starch gels as affected by water and gluten content. LWT-Food Science and Technology, 37, 377–384. DOI: 10.1016/j.lwt.2003.10.008.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Ľubomír Mikuš
    • 1
    Email author
  • Mária Kováčová
    • 1
  • Ladislav Dodok
    • 1
  • Alžbeta Medveďová
    • 1
  • Lucia Mikušová
    • 1
  • Ernest Šturdík
    • 1
  1. 1.Department of Nutrition and Food Assessment, Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations