Skip to main content
Log in

Experimental investigation of bubble and drop formation at submerged orifices

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate bubble/drop formation at a single submerged orifice in stagnant Newtonian fluids and to gain qualitative understanding of the formation mechanism. The effects of various governing parameters were studied. Formation behavior of bubbles and drops in Newtonian aqueous solutions were investigated experimentally under different operating conditions with various orifices. The results show that the volume of the detached dispersed phase (bubble or drop) increases with the viscosity of the continuous phase (or dispersion medium), surface tension, orifice diameter, and dispersed phase flow rate. A PIV system was employed to measure the velocity flow field quantitatively during the bubble/drop formation, giving interesting information useful for the elucidation of the fundamental formation process at the orifice. It was revealed that the orifice shape strongly influences the size of the bubble formed. Furthermore, based on a simple mass balance, a general correlation successfully predicting both bubble and drop sizes has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badam, V. K., Buwa, V., & Durst, F. (2007). Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition. Canadian Journal of Chemical Engineering, 85, 257–267. DOI: 10.1002/cjce.5450850301.

    Article  CAS  Google Scholar 

  • Bashforth, F., & Adams, J. C. (1883). An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid with an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Chang, B., Nave, G., & Jung, S. H. (2012). Drop formation from a wettable nozzle. Communications in Nonlinear Science and Numerical Simulation, 17, 2045–2051. DOI: 10.1016/j.cnsns.2011.08.023.

    Article  Google Scholar 

  • Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. New York, NY, USA: Academic Press.

    Google Scholar 

  • Davidson, J. F., & Schüler, B. O. G. (1960a). Bubble formation at an orifice in a viscous liquid. Transactions of the Institution of Chemical Engineers, 38, 144–154.

    CAS  Google Scholar 

  • Davidson, J. F., & Schüler, B. O. G. (1960b). Bubble formation at an orifice in an inviscid liquid. Transactions of the Institution of Chemical Engineers, 38, 335–342.

    CAS  Google Scholar 

  • de Chazal, L. E. M., & Ryan, J. T. (1971). Formation of organic drops in water. AIChE Journal, 17, 1226–1229. DOI: 10.1002/aic.690170531.

    Article  Google Scholar 

  • Dietrich, N., Poncin, S., Pheulpin, S., & Li, H. Z. (2008). Passage of a bubble through a liquid-liquid interface. AICHE Journal, 54, 594–600. DOI: 10.1002/aic.11399.

    Article  CAS  Google Scholar 

  • Dietrich, N., Poncin, S., & Li, H. Z. (2011). Dynamical deformation of a flat liquid-liquid interface. Experiments in Fluids, 50, 1293–1303. DOI: 10.1007/s00348-010-0989-7.

    Article  Google Scholar 

  • Frank, X., Funfschilling, D., Midoux, N., & Li, H. Z. (2006). Bubbles in a viscous liquid: lattice Boltzmann simulation and experimental validation. Journal of Fluid Mechanics, 546, 113–122. DOI: 10.1017/s0022112005007135.

    Article  CAS  Google Scholar 

  • Funfschilling, D., & Li, H. Z. (2001). Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualization. Chemical Engineering Science, 56, 1137–1141. DOI: 10.1016/s0009-2509(00)00332-8.

    Article  CAS  Google Scholar 

  • Gaddis, E., & Vogelpohl, A. (1986). Bubble formation in quiescent liquids under constant flow conditions. Chemical Engineering Science, 41, 97–105. DOI: 10.1016/0009-2509(86)85202-2.

    Article  CAS  Google Scholar 

  • Heertjes, P. M., & de Nie, L. H. (1971). Mass transfer to drops. In C. Hanson (Ed.), Recent advances in liquid-liquid extraction (pp. 367–406). Oxford, UK: Pergamon Press.

    Google Scholar 

  • Jamialahmadi, M., Zehtaban, M. R., Müller-Steinhagen, H. M., Sarrafi, A., & Smith, J. M. (2001). Study of bubble formation under constant flow conditions. Chemical Engineering Research and Design, 79, 523–532. DOI: 10.1205/02638760152424299.

    Article  CAS  Google Scholar 

  • Kulkarni, A. A., & Joshi, J. B. (2005). Bubble formation and bubble rise velocity in gas-liquid systems: A review. Industrial & Engineering Chemistry Research, 44, 5873–5931. DOI: 10.1021/ie049131p

    Article  CAS  Google Scholar 

  • Kumar, R., & Kuloor, N. R. (1970). The formation of bubbles and drops. Advances in Chemical Engineering, 8, 255–368. DOI: 10.1016/s0065-2377(08)60186-6.

    Article  Google Scholar 

  • Li, H. Z., Frank, X., Funfschilling, D., & Mouline, Y. (2001). Towards the understanding of bubble interactions and coalescence in non-Newtonian fluids: a cognitive approach. Chemical Engineering Science, 56, 6419–6425. DOI: 10.1016/s0009-2509(01)00269-x.

    Article  CAS  Google Scholar 

  • Li, H. Z., Mouline, Y., & Midoux, N. (2002). Modelling the bubble formation dynamics in non-Newtonian fluids. Chemical Engineering Science, 57, 339–346. DOI: 10.1016/s0009-2509(01)00394-3.

    Article  CAS  Google Scholar 

  • Narasinga Rao, E. V. L., Kumar, R., & Kuloor, N. R. (1966). Drop formation studies in liquid-liquid systems. Chemical Engineering Science, 21, 867–880. DOI: 10.1016/0009-2509(66)85081-9.

    Article  Google Scholar 

  • Marmur, A. (2004). Adhesion and wetting in an aqueous environment: Theoretical assessment of sensitivity to the solid surface energy. Langmuir, 20, 1317–1320. DOI: 10.1021/la0359124.

    Article  CAS  Google Scholar 

  • Michael, D. H. (1981). Meniscus stability. Annual Review of Fluid Mechanics, 13, 189–216. DOI: 10.1146/annurev.fl.13.010181.001201.

    Article  Google Scholar 

  • Null, H. R., & Johnson, H. F. (1958). Drop formation in liquidliquid systems from single nozzles. AIChE Journal, 4, 273–281. DOI: 10.1002/aic.690040308.

    Article  CAS  Google Scholar 

  • Oguz, H. N., & Prosperetti, A. (1993). Dynamics of bubble growth and detachment from a needle. Journal of Fluid Mechanics, 257, 111–145. DOI: 10.1017/s0022112093003015.

    Article  CAS  Google Scholar 

  • Scarano, F. (1997). Improvements in PIV image processing application to a backward facing step. Rhode-Saint-Genèse, Belgium: von Karman Institute for Fluid Dynamics. (VKI PR 1997-01)

    Google Scholar 

  • Scheele G. F., & Meister, B. J. (1968a). Drop formation at low velocities in liquid-liquid systems: Part I. Prediction of drop volume. AIChE Journal, 14, 9–15. DOI: 10.1002/aic.690140105.

    CAS  Google Scholar 

  • Scheele, G. F., & Meister, B. J. (1968b). Drop formation at low velocities in liquid-liquid systems: Part II: Prediction of jetting velocity. AIChE Journal, 14, 16–19. DOI: 10.1002/aic.690140106.

    Article  Google Scholar 

  • Tate, T. (1864). On the magnitude of a drop of liquid formed under different circumstances. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 4, 27, 176–180.

    Google Scholar 

  • Timgren, A., Trägårdh, G., & Trägårdh, C. (2008). Application of the PIV technique to measurements around and inside a forming drop in a liquid-liquid system. Experiments in Fluids, 44, 565–575. DOI: 10.1007/s00348-007-0416-x.

    Article  CAS  Google Scholar 

  • Tsuge, H. (1986). Hydrodynamics of bubble formation from submerged orifices. In N. P. Cheremisinoff (Ed.), Encyclopedia of fluid mechanics (Vol. 3, pp. 191). Houston, TX, USA: Gulf.

    Google Scholar 

  • Zhang, X. G. (1999). Dynamics of drop formation in viscous flows. Chemical Engineering Science, 54, 1759–1774. DOI: 10.1016/s0009-2509 (99)00027-5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, N., Mayoufi, N., Poncin, S. et al. Experimental investigation of bubble and drop formation at submerged orifices. Chem. Pap. 67, 313–325 (2013). https://doi.org/10.2478/s11696-012-0277-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0277-5

Keywords

Navigation