Chemical Papers

, Volume 67, Issue 3, pp 313–325 | Cite as

Experimental investigation of bubble and drop formation at submerged orifices

  • Nicolas DietrichEmail author
  • Nadia Mayoufi
  • Souhil Poncin
  • Huai-Zhi Li
Original Paper


The aim of this study was to investigate bubble/drop formation at a single submerged orifice in stagnant Newtonian fluids and to gain qualitative understanding of the formation mechanism. The effects of various governing parameters were studied. Formation behavior of bubbles and drops in Newtonian aqueous solutions were investigated experimentally under different operating conditions with various orifices. The results show that the volume of the detached dispersed phase (bubble or drop) increases with the viscosity of the continuous phase (or dispersion medium), surface tension, orifice diameter, and dispersed phase flow rate. A PIV system was employed to measure the velocity flow field quantitatively during the bubble/drop formation, giving interesting information useful for the elucidation of the fundamental formation process at the orifice. It was revealed that the orifice shape strongly influences the size of the bubble formed. Furthermore, based on a simple mass balance, a general correlation successfully predicting both bubble and drop sizes has been proposed.


bubble drop formation PIV measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badam, V. K., Buwa, V., & Durst, F. (2007). Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition. Canadian Journal of Chemical Engineering, 85, 257–267. DOI: 10.1002/cjce.5450850301.CrossRefGoogle Scholar
  2. Bashforth, F., & Adams, J. C. (1883). An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid with an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops. Cambridge, UK: Cambridge University Press.Google Scholar
  3. Chang, B., Nave, G., & Jung, S. H. (2012). Drop formation from a wettable nozzle. Communications in Nonlinear Science and Numerical Simulation, 17, 2045–2051. DOI: 10.1016/j.cnsns.2011.08.023.CrossRefGoogle Scholar
  4. Clift, R., Grace, J. R., & Weber, M. E. (1978). Bubbles, drops and particles. New York, NY, USA: Academic Press.Google Scholar
  5. Davidson, J. F., & Schüler, B. O. G. (1960a). Bubble formation at an orifice in a viscous liquid. Transactions of the Institution of Chemical Engineers, 38, 144–154.Google Scholar
  6. Davidson, J. F., & Schüler, B. O. G. (1960b). Bubble formation at an orifice in an inviscid liquid. Transactions of the Institution of Chemical Engineers, 38, 335–342.Google Scholar
  7. de Chazal, L. E. M., & Ryan, J. T. (1971). Formation of organic drops in water. AIChE Journal, 17, 1226–1229. DOI: 10.1002/aic.690170531.CrossRefGoogle Scholar
  8. Dietrich, N., Poncin, S., Pheulpin, S., & Li, H. Z. (2008). Passage of a bubble through a liquid-liquid interface. AICHE Journal, 54, 594–600. DOI: 10.1002/aic.11399.CrossRefGoogle Scholar
  9. Dietrich, N., Poncin, S., & Li, H. Z. (2011). Dynamical deformation of a flat liquid-liquid interface. Experiments in Fluids, 50, 1293–1303. DOI: 10.1007/s00348-010-0989-7.CrossRefGoogle Scholar
  10. Frank, X., Funfschilling, D., Midoux, N., & Li, H. Z. (2006). Bubbles in a viscous liquid: lattice Boltzmann simulation and experimental validation. Journal of Fluid Mechanics, 546, 113–122. DOI: 10.1017/s0022112005007135.CrossRefGoogle Scholar
  11. Funfschilling, D., & Li, H. Z. (2001). Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualization. Chemical Engineering Science, 56, 1137–1141. DOI: 10.1016/s0009-2509(00)00332-8.CrossRefGoogle Scholar
  12. Gaddis, E., & Vogelpohl, A. (1986). Bubble formation in quiescent liquids under constant flow conditions. Chemical Engineering Science, 41, 97–105. DOI: 10.1016/0009-2509(86)85202-2.CrossRefGoogle Scholar
  13. Heertjes, P. M., & de Nie, L. H. (1971). Mass transfer to drops. In C. Hanson (Ed.), Recent advances in liquid-liquid extraction (pp. 367–406). Oxford, UK: Pergamon Press.Google Scholar
  14. Jamialahmadi, M., Zehtaban, M. R., Müller-Steinhagen, H. M., Sarrafi, A., & Smith, J. M. (2001). Study of bubble formation under constant flow conditions. Chemical Engineering Research and Design, 79, 523–532. DOI: 10.1205/02638760152424299.CrossRefGoogle Scholar
  15. Kulkarni, A. A., & Joshi, J. B. (2005). Bubble formation and bubble rise velocity in gas-liquid systems: A review. Industrial & Engineering Chemistry Research, 44, 5873–5931. DOI: 10.1021/ie049131pCrossRefGoogle Scholar
  16. Kumar, R., & Kuloor, N. R. (1970). The formation of bubbles and drops. Advances in Chemical Engineering, 8, 255–368. DOI: 10.1016/s0065-2377(08)60186-6.CrossRefGoogle Scholar
  17. Li, H. Z., Frank, X., Funfschilling, D., & Mouline, Y. (2001). Towards the understanding of bubble interactions and coalescence in non-Newtonian fluids: a cognitive approach. Chemical Engineering Science, 56, 6419–6425. DOI: 10.1016/s0009-2509(01)00269-x.CrossRefGoogle Scholar
  18. Li, H. Z., Mouline, Y., & Midoux, N. (2002). Modelling the bubble formation dynamics in non-Newtonian fluids. Chemical Engineering Science, 57, 339–346. DOI: 10.1016/s0009-2509(01)00394-3.CrossRefGoogle Scholar
  19. Narasinga Rao, E. V. L., Kumar, R., & Kuloor, N. R. (1966). Drop formation studies in liquid-liquid systems. Chemical Engineering Science, 21, 867–880. DOI: 10.1016/0009-2509(66)85081-9.CrossRefGoogle Scholar
  20. Marmur, A. (2004). Adhesion and wetting in an aqueous environment: Theoretical assessment of sensitivity to the solid surface energy. Langmuir, 20, 1317–1320. DOI: 10.1021/la0359124.CrossRefGoogle Scholar
  21. Michael, D. H. (1981). Meniscus stability. Annual Review of Fluid Mechanics, 13, 189–216. DOI: 10.1146/annurev.fl.13.010181.001201.CrossRefGoogle Scholar
  22. Null, H. R., & Johnson, H. F. (1958). Drop formation in liquidliquid systems from single nozzles. AIChE Journal, 4, 273–281. DOI: 10.1002/aic.690040308.CrossRefGoogle Scholar
  23. Oguz, H. N., & Prosperetti, A. (1993). Dynamics of bubble growth and detachment from a needle. Journal of Fluid Mechanics, 257, 111–145. DOI: 10.1017/s0022112093003015.CrossRefGoogle Scholar
  24. Scarano, F. (1997). Improvements in PIV image processing application to a backward facing step. Rhode-Saint-Genèse, Belgium: von Karman Institute for Fluid Dynamics. (VKI PR 1997-01)Google Scholar
  25. Scheele G. F., & Meister, B. J. (1968a). Drop formation at low velocities in liquid-liquid systems: Part I. Prediction of drop volume. AIChE Journal, 14, 9–15. DOI: 10.1002/aic.690140105.Google Scholar
  26. Scheele, G. F., & Meister, B. J. (1968b). Drop formation at low velocities in liquid-liquid systems: Part II: Prediction of jetting velocity. AIChE Journal, 14, 16–19. DOI: 10.1002/aic.690140106.CrossRefGoogle Scholar
  27. Tate, T. (1864). On the magnitude of a drop of liquid formed under different circumstances. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 4, 27, 176–180.Google Scholar
  28. Timgren, A., Trägårdh, G., & Trägårdh, C. (2008). Application of the PIV technique to measurements around and inside a forming drop in a liquid-liquid system. Experiments in Fluids, 44, 565–575. DOI: 10.1007/s00348-007-0416-x.CrossRefGoogle Scholar
  29. Tsuge, H. (1986). Hydrodynamics of bubble formation from submerged orifices. In N. P. Cheremisinoff (Ed.), Encyclopedia of fluid mechanics (Vol. 3, pp. 191). Houston, TX, USA: Gulf.Google Scholar
  30. Zhang, X. G. (1999). Dynamics of drop formation in viscous flows. Chemical Engineering Science, 54, 1759–1774. DOI: 10.1016/s0009-2509 (99)00027-5.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Nicolas Dietrich
    • 1
    • 2
    • 3
    • 4
    Email author
  • Nadia Mayoufi
    • 2
  • Souhil Poncin
    • 2
  • Huai-Zhi Li
    • 2
  1. 1.INSA, UPS, INP, LISBPUniversité de ToulouseToulouseFrance
  2. 2.INRA, UMR792Ingénierie des Systèmes Biologiques et des ProcédésToulouseFrance
  3. 3.CNRSUMR5504ToulouseFrance
  4. 4.Laboratory of Reactions and Process Engineering, CNRSUniversité de LorraineNancyFrance

Personalised recommendations