Chemical Papers

, Volume 67, Issue 3, pp 326–335 | Cite as

Cadmium concentration stabilization in a continuous sulfate reducing bioreactor via sulfide concentration control

  • Pablo Antonio López Pérez
  • M. Isabel Neria González
  • Ricardo Aguilar LópezEmail author
Original Paper


Cadmium concentration stabilization in a single input-single output continuous bioreactor via sulfide concentration, as the controlled and measured output state variable, was assumed. For the above process, a novel kinetic model of the sulfate-reducing process for cadmium removal was proposed and experimentally confirmed. This model has been extended to continuous operation, which is employed as a virtual plant to enable the implementation of the proposed controller. The considered nonlinear control law contains a sigmoid feedback of the given control error in order to regulate the sulfide concentration at the maximum value indirectly leading to cadmium concentrations meeting the environmental regulations. A theoretical frame of the closed-loop stability of the bioreactor is provided under the assumption that bounded trajectories occur in the bioreactor. Finally, numerical experiments proved satisfactory performance of the proposed methodology in comparison with the standard sliding-mode and linear PI controllers.


cadmium stabilization sulfide control continuous bioreactor sigmoid controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar-López, R., Martínez-Guerra, R., & Maya-Yescas, R. (2009). Temperature regulation via PI high-order slidingmode controller design: Application to a class of chemical reactor. International Journal of Chemical Reactor Engineering, 7, S1. DOI: 10.2202/1542-6580.1830.CrossRefGoogle Scholar
  2. Aguilar-López. R., Martínez-Guerra, R., Puebla, H., & Hernández-Suárez, R. (2010). High order sliding-mode dynamic control for chaotic intracellular calcium oscillations. Nonlinear Analysis: Real World Applications, 11, 217–231. DOI: 10.1016/j.nonrwa.2008.10.054.CrossRefGoogle Scholar
  3. Al-Tarazi, M., Heesink, A. B. M., & Versteeg, G. F. (2004). Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling. Chemical Engineering Science, 59, 567–579. DOI: 10.1016/j.ces.2003.11.006.CrossRefGoogle Scholar
  4. APHA, AWWA, WPCF (1975). Standard methods for the examination of water and wastewater (14th ed.). Washington, DC, USA: American Public Health Association.Google Scholar
  5. Bakošová, M., Puna, D., Dostál, P., & Závacká J. (2009). Robust stabilization of a chemical reactor. Chemical Papers, 63, 527–536. DOI: 10.2478/s11696-009-0046-2.CrossRefGoogle Scholar
  6. Bassirani, N., Abolhassani, M., & Galavi, M. (2011). Distribution of available micronutrients as related to the soil characteristics of Hissar; Haryana (India). African Journal of Agricultural Research, 6, 4239–4242. DOI: 10.5897/ajar10.970.Google Scholar
  7. Bastin, G., & Dochain, D. (Eds.) (1991). On-line estimation and adaptive control of bioreactors. Amsterdam, The Netherlands: Elsevier.Google Scholar
  8. Benzaouia, A., & El Hajjaji, A. (2011). Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay. International Journal of Innovative Computing, Information and Control, 7, 1533–1547.Google Scholar
  9. Benzaouia, A., Benhayoun, M., & Tadeo, F. (2011). State-feedback stabilization of 2D continuous systems with delays. International Journal of Innovative Computing, Information and Control, 7, 977–988.Google Scholar
  10. Cabrera, G., Perez, R., Gomez, J. M., Abalos, A., & Cantero, D. (2006). Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. Journal of Hazardous Materials, 135, 40–46. DOI: 10.1016/j.jhazmat.2005.11.058.CrossRefGoogle Scholar
  11. Cai, Y., & Hua, K. A. (2002). An adaptive query management technique for real-time monitoring of spatial regions in mobile database systems. In Proceedings of 21st IEEE International Performance, Computing, and Communications Conference, April 3–5, 2002 (pp. 259–266), Phoenix, AZ, USA: IEEE. DOI: 10.1109/ipccc.2002.995159.Google Scholar
  12. Cord-Ruwisch, R. (1985). A quick method for determination of dissolved and precipitated sulfides in cultures of sulphate-reducing bacteria. Journal of Microbiological Methods, 4, 33–36. DOI: 10.1016/0167-7012(85)90005-3.CrossRefGoogle Scholar
  13. Dąbrowska, L. (2012). Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion. Chemical Papers, 66, 598–606. DOI: 10.2478/s11696-011-0128-9.CrossRefGoogle Scholar
  14. De Leeuw, K. (1961). Banach space of Lipschitz functions. Studia Mathematica, 21, 55–66.Google Scholar
  15. Dochain, D. (2003). State and parameter estimation in chemical and biochemical processes: a tutorial. Journal of Process Control, 13, 801–818. DOI: 10.1016/s0959-1524(03)00026-x.CrossRefGoogle Scholar
  16. Dochain, D. (Ed.) (2008). Automatic control of bioprocesses. London, UK: ISTE-Wiley.Google Scholar
  17. Dochain, D., & Vanrolleghem, P. (2001). Dynamical modeling and estimation in wastewater treatment processes. London, UK: IWA Publishing.Google Scholar
  18. Dostál, P., Bakošová, M., Vojtěšek, J., & Bobál, V. (2011). Adaptive nonlinear control of a continuous stirred tank reactor. Chemical Papers, 65, 636–643. DOI: 10.2478/s11696-011-0057-7.CrossRefGoogle Scholar
  19. Fu, F. L., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.CrossRefGoogle Scholar
  20. Gavalas, G. R. (1968). Nonlinear differential equations of chemically reacting systems. Berlin, Germany: Springer.CrossRefGoogle Scholar
  21. Ge, S. S., Hang, C. C., & Zhang, T. (1999). Nonlinear adaptive control using neural network and its application to CSTR systems. Journal of Process Control, 9, 313–323. DOI: 10.1016/s0959-1524(98)00054-7.CrossRefGoogle Scholar
  22. Głuszcz, P., Zakrzewska, K., Wagner-Doebler I., & Ledakowicz, S. (2008). Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon. Chemical Papers, 62, 232–238. DOI: 10.2478/s11696-008-0017-z.CrossRefGoogle Scholar
  23. Guo, Y., Hill, D. J., & Jiang, Z. P. (1996). Global nonlinear control of the ball and beam system. In Proceedings of the 35th IEEE International Conference on Decision and Control, December 11–13, 1996 (Vol. 3, pp. 2818–2823). Kobe, Japan: IEEE.CrossRefGoogle Scholar
  24. Hadj-Sadok, M. Z., & Gouzé, J. L. (2001). Estimation of uncertain models of activated sludge processes with interval observers. Journal of Process Control, 11, 299–310. DOI: 10.1016/s0959-1524(99)00074-8.CrossRefGoogle Scholar
  25. He, Y. Q., & Ha, J. D. (2008). Control Lyapunov functions: New framework for nonlinear controller design. In Proceedings of the 17th IFAC World Congress, July 6–11, 2008 (pp. 14138–14143). Seoul, Korea: International Federation of Automatic Control. DOI: 10.3182/20080706-5-kr-1001.0260.Google Scholar
  26. Heinzle, E., Dunn, I. J., & Ryhiner, G. B. (1993). Modeling and control for anaerobic wastewater treatment. Advances in Biochemical Engineering/Biotechnology, 48, 79–114. DOI: 10.1007/bfb0007197.CrossRefGoogle Scholar
  27. Hidaka, T., Horie, T., Akao, S., & Tsuno, H. (2010). Kinetic model of thermophilic L-lactate fermentation by Bacillus coagulans combined with real-time PCR quantification. Water Research, 44, 2554–2562. DOI: 10.1016/j.watres.2010.01.007.CrossRefGoogle Scholar
  28. Hinrichsen, D., & Pritchard, A. J. (2005). Mathematical systems theory I: Modelling, state space analysis, stability and robustness (Texts in Applied Mathematics, Vol. 48). Berlin, Germany: Springer.Google Scholar
  29. Johnson, K. S., & Coletti, L. J. (2002). In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research, I 49, 1291–1305. DOI: 10.1016/s0967-0637(02)00020-1.CrossRefGoogle Scholar
  30. Köhne, J. M., Köhne, S., & Šimůnek, J. (2006). Multi-process herbicide transport in structured soil columns: Experiments and model analysis. Journal of Contaminant Hydrology, 85, 1–32. DOI: 10.1016/j.jconhyd.2006.01.001.CrossRefGoogle Scholar
  31. Kvasnica, M., Herceg, M., Čirka, Ľ., & Fikar, M. (2010). Model predictive control of a CSTR: A hybrid modeling approach. Chemical Papers, 64, 301–309. DOI: 10.2478/s11696-010-0008-8.CrossRefGoogle Scholar
  32. Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J., & Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 44, 19–41. DOI: 10.1016/j.bej.2008.12.009.CrossRefGoogle Scholar
  33. Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76, 924–941. DOI: 10.1080/0020717031000099029.CrossRefGoogle Scholar
  34. Li, S. H., Wang, Z., & Fei, S. M. (2009). Finite-time control of a bioreactor system using terminal sliding mode. International Journal of Innovative Computing, Information and Control, 5, 3495–3504.Google Scholar
  35. Liu, Y. Y., & Yang, G. H. (2011). Quantized static output feedback stabilization of discrete-time networked control systems. International Journal of Innovative Computing, Information and Control, 7, 719–731.Google Scholar
  36. Madar, J., Abonyi, J., & Szeifert, F. (2005). Feedback linearizing control using hybrid neural networks identified by sensitivity approach. Engineering Applications of Artificial Intelligence, 18, 343–351. DOI: 10.1016/j.engappai.2004.09.006.CrossRefGoogle Scholar
  37. Mailleret, L., Bernard, O., & Steyer, J. P. (2004). Robust nonlinear adaptive control for bioreactors with unknown kinetics. Automatica, 40, 1379–1385. DOI: 10.1016/j.automatica.2004.01.030.CrossRefGoogle Scholar
  38. Medírcio, S. N., Leaõ, V. A., & Teixeira, M. C. (2007). Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium. Journal of Hazardous Materials, 143, 593–596. DOI: 10.1016/j.jhazmat.2006.09.079.CrossRefGoogle Scholar
  39. Mjalli, F. S., & Al-Asheh, S. (2005). Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process. Chemical Engineering & Technology, 28, 1191–1200. DOI: 10.1002/ceat.200500166.CrossRefGoogle Scholar
  40. Morales-Díaz, A., & Carlos-Hernández, S. (2010). Saturated control design for bounded substrate regulation in a continuous anaerobic bioreactor. Revista Mexicana de Ingeniería Química, 9, 219–229.Google Scholar
  41. Munasinghe, S. R., & Nakamura, M. (2007). Hyperbolic tangent function based force-position compliant controller for robotic devices. In International Conference on Control, Automation and Systems ICCAS’ 07, October 17–20, 2007 (pp. 2397–2401). Seoul, Korea: IEEE. DOI: 10.1109/ICCAS.2007.4406763.Google Scholar
  42. Neria-González, I., Wang, E. T., Ramirez, F., Romero, J. M., & Hernández-Rodríguez, C. (2006). Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe, 12, 122–133. DOI: 10.1016/j.anaerobe.2006.02.001.CrossRefGoogle Scholar
  43. Nielsen, A. H., Hvitved-Jacobsen, T., & Vollertsen, J. (2005). Kinetics and stoichiometry of sulfide oxidation by sewer biofilms. Water Research, 39, 4119–4125. DOI: 10.1016/j.watres.2005.07.031.CrossRefGoogle Scholar
  44. Noguera, D. R., Brusseau, G. A., Rittmann, B. E., & Stahl, D. A. (1998). Unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechnology and Bioengineering, 59, 732–746. DOI: 10.1002/(SICI)1097-0290(19980920)59:6<732::AID-BIT10>3.0.CO;2-7.CrossRefGoogle Scholar
  45. Oliveira, R. (2004). Combining first principles modeling and artificial neural networks: a general framework. Computers & Chemical Engineering, 28, 755–766, DOI: 10.1016/j.compchemeng.2004.02.014.CrossRefGoogle Scholar
  46. Pokrovsky, O. S., Feurtet-Mazel, A., Martinez, R. E., Morin, S., Baudrimont, M., Duong, T., & Coste, M. (2010). Experimental study of cadmium interaction with periphytic biofilms. Applied Geochemistry, 25, 418–427. DOI: 10.1016/j.apgeochem.2009.12.008.CrossRefGoogle Scholar
  47. Postgate, J. R. (1985). The sulphate-reducing bacteria (2nd Ed.). Cambridge, UK: Cambridge University Press.Google Scholar
  48. Radha, S., & Seenayya, G. (1992). Environmental factors affecting the bioavailability and toxicity of Cd and Zn to an anaerobic bacterium Desulfovibrio. Science of the Total Environment, 125, 123–136. DOI: 10.1016/0048-9697(92)90386-7.CrossRefGoogle Scholar
  49. Rapaport, A., & Harmand, J. (2002). Robust regulation of a class of partially observed nonlinear continuous bioreactors. Journal of Process Control, 12, 291–302. DOI: 10.1016/s0959-1524(01)00029-4.CrossRefGoogle Scholar
  50. Reddy, G. P., & Chidambaram, M. (1994). Nonlinear control of bioreactors with input multiplicities. Bioprocess and Biosystems Engineering, 11, 97–100. DOI: 10.1007/bf00369604.Google Scholar
  51. Roman, M., & Selişteanu, D. (2012). Nonlinear on-line estimation and adaptive control of a wastewater treatment bio process. Electronics and Electrical Engineering, 117, 23–28. DOI: 10.5755/j01.eee.117.1.1047.CrossRefGoogle Scholar
  52. Saadatjoo, F., Derhami, V., & Karbassi, S. M. (2011). Stabilization of simultaneous linear multivariable systems while improving time-response using genetic algorithms. International Journal of Innovative Computing, Information and Control, 7, 151–160.Google Scholar
  53. Sampaio, R. M. M., Timmers, R. A., Xu, Y., Keesman, K. J., & Lens, P. N. L. (2009). Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor. Journal of Hazardous Materials, 165, 256–265. DOI: 10.1016/j.jhazmat.2008.09.117.CrossRefGoogle Scholar
  54. Santos, B. F., Leite, M. S., Silva F. V., & Fileti, A. M. F. (2012). Neural network model predictive control of a styrene polymerization plant: online testing using an electronic worksheet. Chemical Papers, 66, 654–663. DOI: 10.2478/s11696-012-0165-z.CrossRefGoogle Scholar
  55. Sastry, S. S., & Isidori, A. (1989). Adaptive control of linearizable systems. IEEE Transactions on Automatic Control, 34, 1123–1131. DOI: 10.1109/9.40741.CrossRefGoogle Scholar
  56. Schügerl, K. (2001). Progress in monitoring, modelling and control of bioprocesses during the last 20 years. Journal of Biotechnology, 85, 149–173. DOI: 10.1016/s0168-1656(00)00361-8.CrossRefGoogle Scholar
  57. Tong, S. C., Wang, T. C., & Zhang, W. (2008). Fault tolerant control for uncertain fuzzy systems with actuator faults. International Journal of Innovative Computing, Information and Control, 4, 2461–2474.Google Scholar
  58. van Wageningen, H. S., Sötemann, S. V., Ristow, N. E., Wentzel, M. C., & Ekama, G. A. (2006). Development of a kinetic model for biological sulphate reduction with sewage sludge as substrate. Water SA, 32, 619–626.Google Scholar
  59. Xu, F., & Yu, P. (2010). Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions. Journal of Mathematical Analysis and Applications, 362, 252–274. DOI: 10.1016/j.jmaa.2009.03.041.CrossRefGoogle Scholar
  60. Yin, Y. Y., Liu, F., & Shi, P. (2011). Finite-time gain-scheduled control on stochastic bioreactor systems with partially known transition jump rates. Circuits, Systems, and Signal Processing, 30, 609–627. DOI: 10.1007/s00034-010-9236-y.CrossRefGoogle Scholar
  61. Yüzgeç, U., Becerikli, Y., & Türker, M. (2008). Dynamic neural-network-based model-predictive control of an industrial baker’s yeast drying process. IEEE Transactions on Neural Networks, 19, 1231–1242. DOI: 10.1109/TNN.2008.2000205.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Pablo Antonio López Pérez
    • 1
  • M. Isabel Neria González
    • 2
  • Ricardo Aguilar López
    • 1
    Email author
  1. 1.Department of Biotechnology & Bioengineering CINVESTAV-IPNInstituto Politécnico Nacional 2508San Pedro ZacatencoMéxico
  2. 2.Chemical and Biochemical Engineering DivisionTecnológico de Estudios Superiores de Ecatepec, Tecnológico, Valle de AnáhuacEcatepec de MorelosMéxico

Personalised recommendations