Advertisement

Chemical Papers

, Volume 67, Issue 3, pp 342–349 | Cite as

Bulgarian natural diatomites: modification and characterization

  • Paunka S. Vassileva
  • Madlena S. Apostolova
  • Albena K. DetchevaEmail author
  • Elisaveta H. Ivanova
Original Paper

Abstract

Natural Bulgarian diatomite modified by oxidation with sulfuric acid and H2O2 or by coating with manganese oxide was characterized considering its chemical composition, surface area, pore volume, and structure. Modified diatomites displayed larger surface area and pore volumes in comparison with untreated natural diatomite, which favored their sorption behavior. Sorption properties of diatomites towards Fe3+, Pb2+, Cu2+, Cd2+, Mn2+, Ni2+, Co2+, Cr3+, Pd2+, Ca2+, and Mg2+ were investigated and their sorption capacities were determined. Sorption properties of manganese oxide-modified diatomite were superior to those of diatomite modified by oxidation. Owing to its high sorption capacity towards Co2+, Ni2+, Pb2+, Cr3+, Fe2+, Cu2+, and Cd2+, the manganese oxide-modified diatomite is a promising low-cost sorbent for selective removal of milligram amounts of these toxic metal ions from contaminated water.

Keywords

natural diatomites modification adsorption toxic metal ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonides, L. E. (1998). Diatomite. In Mineral commodity summaries (pp. 56–57). Reston, VA, USA: US Geological Survey.Google Scholar
  2. Al-Degs, Y., Khraisheh, M. A. M., & Tutunji, M. F. (2001). Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Research, 35, 3724–3728. DOI: 10.1016/s0043-1354(01)00071-9.CrossRefGoogle Scholar
  3. Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 69, 229–238. DOI: 10.1016/j.jenvman.2003.09.005.CrossRefGoogle Scholar
  4. Al-Ghouti, M. A., Khraisheh, M. A. M., Ahmad, M. N. M., & Allen, S. (2009). Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. Journal of Hazardous Materials, 165, 589–598. DOI: 10.1016/j.jhazmat.2008.10.018.CrossRefGoogle Scholar
  5. Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. DOI: 10.1016/s0304-3894(02)00263-7.CrossRefGoogle Scholar
  6. Bailey, S. E., Olin, T. J., Brica, R. M., & Adrian, D. D. (1999). A review of the potentially low-cost sorbents for heavy metals. Water Research, 33, 2469–2479. DOI: 10.1016/s0043-1354(98)00475-8.CrossRefGoogle Scholar
  7. Bakr, H. E. G. M. M. (2010). Diatomite: Its characterization, modifications and applications. Asian Journal of Material Science, 2, 121–136. DOI: 10.3923/ajmskr.2010.121.136.CrossRefGoogle Scholar
  8. Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140, 114–131. DOI: 10.1016/j.cis.2007.12.008.CrossRefGoogle Scholar
  9. Boevski, I., Genov, K., Boevska, N., Milenova, K., Batakliev, T., Georgiev, V., Nikolov, P., & Sarker, D. K. (2011). Low temperature ozone decomposition on Cu2+, Zn2+ and Mn2+-exchanged clinoptilolite. Comptes Rendus de l’Académie Bulgare des Sciences, 64, 33–38.Google Scholar
  10. Brandão, M. S. B., & Galembeck, F. (1990). Copper, lead and zinc adsorption on MnO2-impregnated cellulose acetate. Colloids and Surfaces, 48, 351–362. DOI: 10.1016/0166-6622(90)80240-5.CrossRefGoogle Scholar
  11. Eren, E. (2008). Removal of copper ions by modified Unye clay, Turkey. Journal of Hazardous Materials, 159, 235–244. DOI: 10.1016/j.jhazmat.2008.02.035.CrossRefGoogle Scholar
  12. Eren, E., Afsin, B., & Onal, Y. (2009). Removal of lead ions by acid activated and manganese oxide-coated bentonite. Journal of Hazardous Materials, 161, 677–685. DOI: 10.1016/j.jhazmat.2008.04.020CrossRefGoogle Scholar
  13. Fan, H. J., & Anderson, P. R. (2005). Copper and cadmium removal by Mn oxide-coated granular activated carbon, Separation and Purification Technology, 45, 61–67. DOI: 10.1016/j.seppur.2005.02.009.CrossRefGoogle Scholar
  14. Gocheva, E. (1983). Physico-chemical properties of natural Bulgarian diatomites and possibilities for their regulation. PhD. thesis, Bulgarian Academy of Sciences, Sofia, Bulgaria.Google Scholar
  15. Gocheva, E., Lakov, L., & Tsvetanova, K. (1989). A method of preparation of powdered materials from natural infusorial earths with a high impurity content. Communications of the Department of Chemistry of the Bulgarian Academy of Sciences, 22, 656–668. (in Russian)Google Scholar
  16. Gocheva, E., Vassileva, P., Lakov, L., & Peshev, O. (1993). Phosphazenes on diatomaceous earths in water adsorption. Journal of Materials Science, 28, 5251–5256. DOI: 10.1007/bf00570073.CrossRefGoogle Scholar
  17. Gürü, M., Venedik, D., & Murathana, A. (2008). Removal of trivalent chromium from water using low-cost natural diatomite. Journal of Hazardous Materials,160, 318–323 DOI: 10.1016/j.jhazmat.2008.03.002.CrossRefGoogle Scholar
  18. Han, R. P., Lu, Z., Zou, W. H., Wang, D. T., Jie, S., & Yang, J. J. (2006). Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: II. Equilibrium study and competitive adsorption. Journal of Hazardous Materials, 137, 480–488. DOI: 10.1016/j.jhazmat.2006.02.018.CrossRefGoogle Scholar
  19. Khraisheh, M. A. M., Al-degs, Y. S., & Mcminn, W. A. M. (2004). Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal, 99, 177–184. DOI: 10.1016/j.cej.2003.11.029.CrossRefGoogle Scholar
  20. Khraisheh, M. A. M., Al-Ghouti, M. A., Allen, S. J., & Ahmad, M. N. (2005). Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 39, 922–932. DOI: 10.1016/j.watres.2004.12.008.CrossRefGoogle Scholar
  21. Kooli, F., & Jones, W. (1997). Characterization and catalytic properties of a saponite clay modified by acid activation. Clay Minerals, 32, 633–643. DOI: 10.1180/claymin.1997.032.4.13.CrossRefGoogle Scholar
  22. Lakov, L., Vassileva, P., & Gocheva, E. (1995). Sorption of Co(II), Ni(II), Ag(I) and Au(III) on pyrazolone-containing inorganic sorbents. Fresenius’ Journal of Analytical Chemistry, 351, 583–584. DOI: 10.1007/bf00322737.CrossRefGoogle Scholar
  23. Li, E., Zeng, X. Y., & Fan, Y. H. (2009). Removal of chromium ion (III) from aqueous solution by manganese oxide and microemulsion modified diatomite. Desalination, 238, 158–165. DOI: 10.1016/j.desal.2007.11.062.CrossRefGoogle Scholar
  24. Lü, R. Q., Tangbo, H. J., Wang, Q. Y., & Xiang, S. H. (2003). Properties and characterization of modifed HZSM-5 zeolites. Journal of Natural Gas Chemistry, 12, 56–62.Google Scholar
  25. Merkle, P. B., Knocke, W. R., & Gallagher, D. L. (1997). Method for coating filter media with synthetic manganese oxide. Journal of Environmental Engineering, 123, 642–649. DOI: 10.1061/(ASCE)0733-9372(1997)123:7(642).CrossRefGoogle Scholar
  26. Mohamedbakr, H., & Burkitbaev, M. (2008). Immobilization of lead ion from aqueous solutions by using natural/processed diatomite. Oecologia Aegyptiaca, 1, 21–29.Google Scholar
  27. Moore, W. S., & Reid, D. F. (1973). Extraction of radium from natural waters using manganese-impregnated acrylic fibres. Journal of Geophysical Research, 78, 8880–8886. DOI: 10.1029/jc078i036p08880.CrossRefGoogle Scholar
  28. Pierce, C. (1953). Computation of pore sizes from physical adsorption data. Journal of Physical Chemistry, 57, 149–152. DOI: 10.1021/j150503a005.CrossRefGoogle Scholar
  29. Pookmanee, P., Thippraphan, P., & Phanichphant, S. (2010). Manganese chloride modification of natural diatomite by using hydrothermal method. Journal of the Microscopy Society of Thailand, 24(2), 99–102.Google Scholar
  30. Puanngam, M., & Unob, F. (2008). Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions. Journal of Hazardous Materials, 154, 578–587. DOI: 10.1016/j.jhazmat.2007.10.090.CrossRefGoogle Scholar
  31. Sagara, F., Ning, W. B., Yoshida, I., & Ueno, K. (1989). Preparation and adsorption properties of λ-MnO2-cellulose hybridtype ion-exchanger for lithium ion. Application to the enrichment of lithium ion from seawater. Separation Science and Technology, 24, 1227–1243. DOI: 10.1080/014963989080498 99.Google Scholar
  32. Semushin, A. M., Belov, B. A., & Stepchenko, I. V. (1984). Modification of active carbons with manganese dioxide. Journal of Applied Chemistry of the USSR, 57, 2411–2412.Google Scholar
  33. Shawabkeh, R. A., & Tutunji, M. F. (2003). Experimental study and modeling of basic dye sorption by diatomaceous clay. Applied Clay Science, 24, 111–120. DOI: 10.1016/s0169-1317(03)00154-6.CrossRefGoogle Scholar
  34. Sheng, G. D., Wang, S. W., Hu, J., Lua, Y., Li, J. X., Dong, Y. H., & Wang, X. K. (2009). Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids and Surfaces A, 339, 159–166. DOI: 10.1016/j.colsurfa.2009.02.016.CrossRefGoogle Scholar
  35. Todorova, O., Vassileva, P., & Lakov, L. (1993). Synthesis and characterization of inorganic sorbents containing pyrazolone. Fresenius’ Journal of Analytical Chemistry, 346, 943–946. DOI: 10.1007/bf00322755.CrossRefGoogle Scholar
  36. Tripathy, S. S., & Kanungo, S. B. (2005). Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH. Journal of Colloid and Interface Science, 284, 30–38. DOI: 10.1016/j.jcis.2004.09.054.CrossRefGoogle Scholar
  37. Tripathy, S. S., Bersillon, J. L., & Gopal, K. (2006). Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 194, 11–21. DOI: 10.1016/j.desal.2005.10.023.CrossRefGoogle Scholar
  38. Tsai, W. T., Hsien, K. J., & Yang, J. M. J. (2004). Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution. Journal of Colloid and Interface Science, 275, 428–433. DOI: 10.1016/j.jcis2004.02.093.CrossRefGoogle Scholar
  39. Tsai, W. T., Hsien, K. J., Chang, Y. M., & Lo, C. C. (2005). Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource Technology, 96, 657–663. DOI: 10.1016/j.biortech.2004.06.023.CrossRefGoogle Scholar
  40. Vassileva, P., Gentscheva, G., Ivanova, E., Tzvetkova, P., Voykova, D., & Apostolova, M. (2011). Characterization of natural diatomites from Bulgaria. Comptes Rendus de l’Académie Bulgare des Sciences, 64, 823–830.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Paunka S. Vassileva
    • 1
  • Madlena S. Apostolova
    • 1
  • Albena K. Detcheva
    • 1
    Email author
  • Elisaveta H. Ivanova
    • 1
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations