Advertisement

Chemical Papers

, Volume 67, Issue 3, pp 336–341 | Cite as

Facile synthesis of gemini surface-active ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation

  • Chuan Jie ChengEmail author
  • Quan Lei Fu
  • Xiong Xiong Bai
  • Shao Jin Liu
  • Liang ShenEmail author
  • Wu Qin Fan
  • Hong Xia Li
Original Paper

Abstract

A novel cationic gemini surfactant has been readily synthesised in 70 % total yield. The functional gemini surfactant can act both as an emulsifier and an atom transfer radical polymerisation (ATRP) initiator in mini-emulsion polymerisation of methyl methacrylate (MMA), in which no other emulsifier was required. 1-(Dimethylamino)dodecane (N,N-dimethyldodecylamine, DMDA) was found to be a good ligand in the activator generated by electron transfer (AGET) ATRP reaction. Kinetic studies indicated that the polymerisation featured controlled/living radical polymerisation.

Keywords

gemini surfactant activator generated by electron transfer atom transfer radical polymerisation (AGET ATRP) mini-emulsion polymerisation soap-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, C., Shu, J., Gong, S., Shen, L., Qiao, Y., & Fu, C. (2010). Synthesis and use of a surface-active initiator in emulsion polymerisation under AGET and ARGET ATRP conditions. New Journal of Chemistry, 34, 163–170. DOI: 10.1039/b9nj00307j.CrossRefGoogle Scholar
  2. Cheng, C., Fu, Q., Liu, Z., Shen, L., Qiao, Y., & Fu, C. (2011). Emulsifier-free synthesis of crosslinkable ABA triblock copolymer nanoparticles via AGET ATRP. Macromolecular Research, 19, 1048–1055. DOI: 10.1007/s13233-011-1008-4.CrossRefGoogle Scholar
  3. Faustino, C. M. C., Calado, A. R. T., & Garcia-Rio, L. (2009). Gemini surfactant-protein interactions: effect of pH, temperature, and surfactant stereochemistry. Biomacromolecules, 10, 2508–2514. DOI: 10.1021/bm9004723.CrossRefGoogle Scholar
  4. Gao, H., & Matyjaszewski, K. (2009). Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Progress in Polymer Science, 34, 317–350. DOI: 10.1016/j.progpolymsci.2009.01.001.CrossRefGoogle Scholar
  5. Hu, Z., Shen, X., Qiu, H., Lai, G., Wu, J., & Li, W. (2009). AGET ATRP of methyl methacrylate with poly(ethylene glycol) (PEG) as solvent and TMEDA as both ligand and reducing agent. European Polymer Journal, 45, 2313–2318. DOI: 10.1016/j.eurpolymj.2009.05.004.CrossRefGoogle Scholar
  6. Jahan, N., Paul, N., Petropolis, C. J., Marangoni, D. G., & Grindley, T. B. (2009). Synthesis of surfactants based on pentaerythritol. I. Cationic and zwitterionic gemini surfactants. The Journal of Organic Chemistry, 74, 7762–7773. DOI: 10.1021/jo9018107.CrossRefGoogle Scholar
  7. Jakubowski, W., & Matyjaszewski, K. (2005). Activator generated by electron transfer for atom transfer radical polymerisation. Macromolecules, 38, 4139–4146. DOI: 10.1021/ma047389l.CrossRefGoogle Scholar
  8. Jakubowski, W., & Matyjaszewski, K. (2006). Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angewandte Chemie International Edition, 45, 4482–4486. DOI: 10.1002/anie.200600272.CrossRefGoogle Scholar
  9. Jiang, Z. L., Liu, X. H., Wu, Z. Q., Jiang, C. W., & Deng, Y. C. (1998). Microwave solid state synthesis of the complex between Cu(II) and hexamethylenetetramine and its application. Journal of Guangxi Normal University, 16, 49–53. (in Chinese)Google Scholar
  10. Li, W., Min, K., Matyjaszewski, K., Stoffelbach, F., & Charleux, B. (2008). PEO-based block copolymers and homopolymers as reactive surfactants for AGET ATRP of butyl acrylate in mini-emulsion. Macromolecules, 41, 6387–6392. DOI: 10.1021/ma800892e.CrossRefGoogle Scholar
  11. Li, W., Matyjaszewski, K., Albrecht, K., & Möller, M. (2009). Reactive surfactants for polymeric nanocapsules via interfacially confined mini-emulsion ATRP. Macromolecules, 42, 8228–8233. DOI: 10.1021/ma901574y.CrossRefGoogle Scholar
  12. Li, W., & Matyjaszewski, K. (2011). Cationic surface-active monomers as reactive surfactants for AGET emulsion ATRP of n-butyl methacrylate. Macromolecules, 44, 5578–5585. DOI: 10.1021/ma201058t.CrossRefGoogle Scholar
  13. Liu, Q., Li, Y., Yao, L., & Yao, S. (2009). Use of gemini surfactants as semipermanent capillary coatings in aqueous-organic solvents for capillary electrophoretic separation of inorganic anions. Journal of Separation Science, 32, 4148–4154. DOI: 10.1002/jssc.200900403.CrossRefGoogle Scholar
  14. Lu, J., Yan, F., & Texter, J. (2009). Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 34, 431–448. DOI: 10.1016/j.progpolymsci.2008.12.001.CrossRefGoogle Scholar
  15. Ma, J., Cheng, C., & Wooley, K. L. (2009). Cycloalkenylfunctionalized polymers and block copolymers: Syntheses via selective RAFT polymerisations and demonstration of their versatile reactivity. Macromolecules, 42, 1565–1573. DOI: 10.1021/ma8024255.CrossRefGoogle Scholar
  16. Mincheva, R., Paneva, D., Mespouille, L., Manolova, N., Rashkov, I., & Dubois, P. (2009). Optimized water-based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1108–1119. DOI: 10.1002/pola.23222.CrossRefGoogle Scholar
  17. Oh, J. K., Perineau, F., Charleux, B., & Matyjaszewski, K. (2009). AGET ATRP in water and inverse mini-emulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1771–1781. DOI: 10.1002/pola.23272.CrossRefGoogle Scholar
  18. Qiu, L. G., Xie, A. J., & Shen, Y. H. (2005). A novel triazole-based cationic gemini surfactant: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid. Materials Chemistry and Physics, 91, 269–273. DOI: 10.1016/j.matchemphys.2004.11.022.CrossRefGoogle Scholar
  19. Rajendrakumar, K., & Dhamodharan, R. (2009). Ambient temperature atom transfer radical copolymerisation of tetrahydrofurfuryl methacrylate and methyl methacrylate: Reactivity ratio determination. European Polymer Journal, 45, 2685–2694. DOI: 10.1016/j.eurpolymj.2009.05.025.CrossRefGoogle Scholar
  20. Rhiannon, K. I., Wooley, K. L., Nyström, A. M., Burke, D. J., Kade, M. J., & Hawker, C. J. (2009). Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chemical Reviews, 109, 5620–5686. DOI: 10.1021/cr900138t.CrossRefGoogle Scholar
  21. Satoh, K., & Kamigaito, M. (2009). Stereospecific living radical polymerisation: Dual control of chain length and tacticity for precision polymer synthesis. Chemical Reviews, 109, 5120–5156. DOI: 10.1021/cr900115u.CrossRefGoogle Scholar
  22. Schork, F. J., Luo, Y., Smulders, W., Russum, J. P., Butté, A., & Fontenot, K. (2005). Mini-emulsion polymerisation. Advances in Polymer Science, 175, 129–255. DOI 10.1007/b100115.Google Scholar
  23. Shen, L., Ma, C., Pu, S., Cheng, C., Xu, J., Li, L., & Fu, C. (2009). Synthesis and properties of novel photochromic poly(methyl methacrylate-co-diarylethene)s. New Journal of Chemistry, 33, 825–830. DOI: 10.1039/b813901f.CrossRefGoogle Scholar
  24. Simms, R. W., & Cunningham, M. F. (2008). High molecular weight poly(butyl methacrylate) via ATRP miniemulsions. Macromolecular Symposia, 261, 32–35. DOI: 10.1002/masy.200850105.CrossRefGoogle Scholar
  25. Tan, H., & Xiao, H. (2008). Synthesis and antimicrobial characterization of novel l-lysine gemini surfactants pended with reactive groups. Tetrahedron Letters, 49, 1759–1761. DOI: 10.1016/j.tetlet.2008.01.079.CrossRefGoogle Scholar
  26. Tsarevsky, N. V., & Matyjaszewski, K. (2007). “Green” atom transfer radical polymerisation: From process design to preparation of well-defined environmentally friendly polymeric materials. Chemical Reviews, 107, 2270–2299. DOI: 10.1021/cr050947p.CrossRefGoogle Scholar
  27. Wang, X. L., Zhang, X. H., Cao, M., Zheng, H. Z., Xiao, B., Wang, Y., & Li, M. (2009). Gemini surfactant-induced DNA condensation into a beadlike structure. The Journal of Physical Chemistry B, 113, 2328–2332. DOI: 10.1021/jp8078887.CrossRefGoogle Scholar
  28. Xia, J., Johnson, T., Gaynor, S. G., Matyjaszewski, K., & DeSimone, J. (1999). Atom transfer radical polymerisation in supercritical carbon dioxide. Macromolecules, 32, 4802–4805. DOI: 10.1021/ma9900380.CrossRefGoogle Scholar
  29. Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Advances in Colloid and Interface Science, 97, 205–253. DOI: 10.1016/s0001-8686(01)00069-0.Google Scholar
  30. Zhao, X., Yu, Y., Xu, S., & Wang, B. (2009). Controlled/“living” radical polymerisation of methyl methacrylate catalyzed by CpCo(I) complexes conveniently generated from cobaltocene in situ. Polymer, 50, 2258–2263. DOI: 10.1016/j.polymer.2009.03.019.CrossRefGoogle Scholar
  31. Zhou, J. H., & Cui, Y. D. (2001). Measurement and calculation of HLB value of surfactants I. The measurement of HLB value. Speciality Petrochemicals, 2, 11–14. (in Chinese)Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Chuan Jie Cheng
    • 1
    Email author
  • Quan Lei Fu
    • 1
  • Xiong Xiong Bai
    • 1
  • Shao Jin Liu
    • 1
  • Liang Shen
    • 1
    Email author
  • Wu Qin Fan
    • 1
  • Hong Xia Li
    • 1
  1. 1.School of Chemistry and Chemical EngineeringJiangxi Science & Technology Normal UniversityJiangxiChina

Personalised recommendations