Chemical Papers

, Volume 67, Issue 2, pp 155–163 | Cite as

Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling

  • Cong-Shan Zhou
  • Ping Xu
  • Ke-Wen TangEmail author
  • Xin-Yu Jiang
  • Tao Yang
  • Pan-Liang Zhang
Original Paper


Enantioselective extraction of hydrophilic 2-chloromandelic acid (CMA) enantiomers from organic to aqueous phase with hydroxypropyl-β-cyclodextrin (HP-β-CD) as the selector was investigated. Equilibrium of the extraction system was modeled using a reactive extraction model with a homogeneous aqueous phase reaction. The influence of important process variables on the extraction efficiency, such as the type of the organic solvent and β-cyclodextrin derivatives (β-CDs), concentration of the selector, pH and temperature, was investigated by experiment and modeling. Important parameters of this model were determined experimentally. Results showed that the experimental data agree with the model prediction perfectly and the model was further applied to accurately predict the extraction efficiency influenced simultaneously by pH and the concentration of HP-β-CD. Combining the experiment and the model data, the best extraction conditions were: pH of 2.5, HP-β-CD concentration of 0.05 mol L−1, and temperature of 5°C, providing the enantioselectivity of 1.285 and the performance factor (pf) of 0.011.


2-chloromandelic acid hydroxypropyl-β-cyclodextrin reactive extraction reaction mechanism modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ameyibor, E., & Stewart, J. T. (1997). Enantiomeric HPLC separation of selected chiral drugs using native and derivatized β-cyclodextrins as chiral mobile phase additives. Journal of Liquid Chromatography & Related Technologies, 20, 855–869. DOI: 10.1080/10826079708013658.CrossRefGoogle Scholar
  2. Colera, M., Costero, A. M., Gaviña, P., & Gil, S. (2005). Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 16, 2673–2679. DOI: 10.1016/j.tetasy.2005.06.039.CrossRefGoogle Scholar
  3. Desiderio, C., & Fanali, S. (1998). Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. Journal of Chromatography A, 807, 37–56. DOI: 10.1016/s0021-9673(98)00061-2.CrossRefGoogle Scholar
  4. Francotte, E. R., & Richert, P. (1997). Applications of simulated moving-bed chromatography to the separation of the enantiomers of chiral drugs. Journal of Chromatography A, 769, 101–107. DOI: 10.1016/s0021-9673(97)00172-6.CrossRefGoogle Scholar
  5. Franco, C., Schwingel, L., Lula, I., Sinisterra, R. D., Koester, L. S., & Bassani, V. L. (2009). Studies on coumestrol/β-cyclodextrin association: Inclusion complex characterization. International Journal of Pharmaceutics, 369, 5–11. DOI: 10.1016/j.ijpharm.2008.10.026.CrossRefGoogle Scholar
  6. Gourlay, M. D., Kendrick, J., & Leusen, F. J. J. (2008). Predicting the spontaneous chiral resolution by crystallization of a pair of flexible nitroxide radicals. Crystal Growth & Design, 8, 2899–2905. DOI: 10.1021/cg701256e.CrossRefGoogle Scholar
  7. Hallett, A. J., Kwant, G. J., & de Vries, J. G. (2009). Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of cinchona-based chiral host compounds. Chemistry A European Journal, 15, 2111–2120. DOI: 10.1002/chem.200800797.CrossRefGoogle Scholar
  8. He, H. M., Xu, X. Z., Zhang, D. T., & Chen, J. J. (2005). Enantioseparation of alkyl tropate by high performance liquid chromatography using (2R, 3R)-di-n-propyl tartrate. Analytical Chimica Acta, 536, 15–20. DOI: 10.1016/j.aca.2004.12. 029.CrossRefGoogle Scholar
  9. He, Q., Rohani, S., Zhu, J., & Gomaa, H. (2010). Crystallization of the racemic compound and conglomerate of (RS)-2-chloromandelic acid. Crystal Growth & Design, 10, 5136–5145. DOI: 10.1021/cg100879p.CrossRefGoogle Scholar
  10. Jiao, F. P., Chen, X. Q., Hu, W. G, Ning, F. R., & Huang, K. L. (2007). Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors. Chemical Papers, 61, 326–328. DOI: 10.2478/s11696-007-0041-4.CrossRefGoogle Scholar
  11. Keurentjes, J. T. F., Nabuurs, L. J. W. M., & Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-x.CrossRefGoogle Scholar
  12. Koska, J., & Haynes, C. A. (2001). Modelling multiple chemical equilibria in chiral partition systems. Chemical Engineering Science, 56, 5853–5864. DOI: 10.1016/s0009-2509(00)00419-x.CrossRefGoogle Scholar
  13. Kuhn, R., Erni, F., Bereuter, T., & Haeusler, J. (1992). Chiral recognition and enantiomeric resolution based on host-guest complexation with crown ethers in capillary zone electrophoresis. Analytical Chemistry, 64, 2815–2820. DOI: 10.1021/ac00046a026.CrossRefGoogle Scholar
  14. Osprian, I., Fechter, M. H., & Griengl, H. (2003). Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. Journal of Molecular Catalysis B: Enzymatic, 24–25, 89–98. DOI: 10.1016/s1381-1177(03)00113-9.CrossRefGoogle Scholar
  15. O’Brien, T., Crocker, L., Thompson, R., Thompson, K., Toma, P. H., Conlon, D. A., Feibush, B., Moeder, C., Bicker, G., & Grinberg, N. (1997). Mechanistic aspects of chiral discrimination on modified cellulose. Analytical Chemistry, 69, 1999–2007. DOI: 10.1021/ac961241l.CrossRefGoogle Scholar
  16. Purkarthofer, T., Skranc, W., Schuster, C., & Griengl, H. (2007). Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry. Applied Microbiology and Biotechnology, 76, 309–320. DOI: 10.1007/s00253-007-1025-6.CrossRefGoogle Scholar
  17. Rajamohan, R., Nayaki, S. K., & Swaminathan, M. (2011). A study on host-guest complexation of 5-amino-2-mercaptobenzimidazole with β-cyclodextrin. Journal of Solution Chemistry, 40, 803–817. DOI: 10.1007/s10953-011-9691-5.CrossRefGoogle Scholar
  18. Schuur, B., Winkelman, J. G. M., & Heeres, H. J. (2008). Equilibrium studies on enantioselective liquid-liquid amino acid extraction using a cinchona alkaloid extractant. Industrial & Engineering Chemistry Research, 47, 10027–10033. DOI: 10.1021/ie800668e.CrossRefGoogle Scholar
  19. Schuur, B., Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., Heeres, H. J., & Feringa, B. L. (2011). Chiral separation by enantioselective liquid-liquid extraction. Organic & Biomolecular Chemistry, 9, 36–51. DOI: 10.1039/c0ob00610f.CrossRefGoogle Scholar
  20. Shanmugam, M., Ramesh, D., Nagalakshmi, V., Kavitha, R., Rajamohan, R., & Stalin, T. (2008). Host-guest interaction of L-tyrosine with β-cyclodextrin. Spectrochimica Acta Part A, 71, 125–132. DOI: 10.1016/j.saa.2007.10.054.CrossRefGoogle Scholar
  21. Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2006). Influence of process parameters on extraction equilibria for the chiral separation of amines and amino-alcohols with a chiral crown ether. Journal of Chemical Technology and Biotechnology, 81, 588–597. DOI: 10.1002/jctb.1434.CrossRefGoogle Scholar
  22. Tang, K. W., Yi, J. M., Huang, K. L., & Zhang, G. L. (2009). Biphasic recognition chiral extraction: A novel method for separation of mandelic acid enantiomers. Chirality, 21, 390–395. DOI: 10.1002/chir.20601.CrossRefGoogle Scholar
  23. Tang, K. W., & Zhang, P. L. (2011). Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors. Chemical Papers, 65, 273–279. DOI: 10.2478/s11696-011-0011-8.CrossRefGoogle Scholar
  24. Tang, K. W., Zhang, P. L., & Li, H. J. (2011a). Experimental and model study on the multiple chemical equilibrium for reactive extraction of ibuprofen enantiomers with HP-β-CD as hydrophilic selector. Process Biochemistry, 46, 1817–1824. DOI: 10.1016/j.procbio.2011.06.011.CrossRefGoogle Scholar
  25. Tang, K. W., Zhang, P. L., Pan, C. Y., & Li, H. J. (2011b). Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic β-cyclodextrin derivatives. AIChE Journal, 57, 3027–3036. DOI: 10.1002/aic.12513.CrossRefGoogle Scholar
  26. Tong, S. Q., Yan, J. Z., Guan, Y. X., Fu, Y. E., & Ito, Y. (2010). Separation of α-cyclohexylmandelic acid enantiomers using biphasic chiral recognition high-speed counter-current chromatography. Journal of Chromatography A, 1217, 3044–3052. DOI: 10.1016/j.chroma.2010.02.077.CrossRefGoogle Scholar
  27. Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., & Feringa, B. L. (2009). Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes. The Journal of Organic Chemistry, 74, 6526–6533. DOI: 10.1021/jo901002d.CrossRefGoogle Scholar
  28. Viegas, R. M. C., Afonso, C. A. M., Crespo, J. G., & Coelhoso, I. M. (2007). Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 53, 224–234. DOI: 10.1016/j.seppur.2006.07.010.CrossRefGoogle Scholar
  29. Ward, T. J., & Baker, B. A. (2008). Chiral separations. Analytical Chemistry, 80, 4363–4372. DOI: 10.1021/ac800662y.CrossRefGoogle Scholar
  30. Zhao, G. Y., Wu, H., Dong, S. L., & Du, L. M. (2008). Study on the inclusion interaction of methylated-β-cyclodextrins with albendazole by spectrofluorimetry and its application. Chinese Chemical Letters, 19, 951–954. DOI: 10.1016/j.cclet.2008. 05.014.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Cong-Shan Zhou
    • 1
  • Ping Xu
    • 2
  • Ke-Wen Tang
    • 1
    Email author
  • Xin-Yu Jiang
    • 2
  • Tao Yang
    • 1
  • Pan-Liang Zhang
    • 1
  1. 1.College of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangHunan, China
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan, China

Personalised recommendations