Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 164–172 | Cite as

Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures

  • Miloslav HartmanEmail author
  • Karel Svoboda
  • Michael Pohořelý
  • Michal Šyc
  • Michal Jeremiáš
Original Paper

Abstract

Results of an experimental study on the rate of attrition of lime catalyst/sorbent in a high-temperature, turbulent fluidized bed with quartz sand are presented. Batch measurements were conducted at 850°C in an electrically heated gasification reactor of the inner diameter of 5.1 cm with three samples of high-grade dolomitic lime of the particle size 450 μm, 715 μm, and 1060 μm, respectively. In addition to the influence of the particle size, the effect of operating (elapsed) time was investigated at different superficial gas velocities. Assuming that the attrition rate decreases exponentially with time, a simple mechanistic model, enabling the correlation of the measured experimental data, was developed. The course of the lime particles attrition is described as a function of the elapsed time, excess gas velocity, and particle size. The presented approach and the results might be applicable for the attrition of high-grade dolomitic lime, particularly in fluidized gasification of biomass.

Keywords

dolomitic lime attrition fluidized bed catalytic gasification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu El-Rub, Z., Bramer, E. A., & Brem, G. (2004). Review of catalysts for tar elimination in biomass gasification processes. Industrial & Engineering Chemistry Research, 43, 6911–6919. DOI: 10.1021/ie0498403.CrossRefGoogle Scholar
  2. Ayazi Shamlou, P., Liu, Z., & Yates, J. G. (1990). Hydrodynamic influences on particle breakage in fluidized beds. Chemical Engineering Science, 45, 809–817. DOI: 10.1016/0009-2509(90)85004-w.CrossRefGoogle Scholar
  3. Boynton, R. S. (1980). Chemistry and technology of lime and limestone (2nd ed.). New York, NY, USA: Wiley.Google Scholar
  4. Chen, Z. X., Grace, J. R., & Lim, C. J. (2008). Limestone particle attrition and size distribution in a small circulating fluidized bed. Fuel, 87, 1360–1371. DOI:10.1016/j.fuel.2007.06.012.CrossRefGoogle Scholar
  5. Cook, J. L., Khang S. J., Lee, S. K., & Keener, T. C. (1996). Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber. Powder Technology, 89, 1–8. DOI: 10.1016/s0032-5910(96)03115-4.CrossRefGoogle Scholar
  6. Corella, J., Toledo, J. M., & Aznar, M. P. (2002). Improving the modeling of the kinetics of the catalytic tar elimination in biomass gasification. Industrial & Engineering Chemistry Research, 41, 3351–3356. DOI: 10.1021/ie0110336.CrossRefGoogle Scholar
  7. Di Benedetto, A., & Salatino, P. (1998). Modeling attrition of limestone during calcination and sulfation in a fluidized bed reactor. Powder Technology 95, 119–128. DOI: 10.1016/s0032-5910(97)03327-5.CrossRefGoogle Scholar
  8. Gil, J., Caballero, M. A., Martin, J. A., Aznar, M. P., & Corella, J. (1999). Biomass gasification with air in a fluidized bed: Effect of the in-bed use of dolomite under different operation conditions. Industrial & Engineering Chemistry Research, 38, 4226–4235. DOI: 10.1021/ie980802r.CrossRefGoogle Scholar
  9. Hartman, M., & Svoboda, K. (1986). Predicting the effect of operating temperature on the minimum fluidization velocity. Industrial & Engineering Chemistry Process Design and Development, 25, 649–654. DOI: 10.1021/i200034a009.CrossRefGoogle Scholar
  10. Hartman, M., Svoboda, K., & Trnka, O. (1991). Unsteady-state retention of sulfur dioxide in a fluidized bed with continual feeding of lime and limestone. Industrial & Engineering Chemistry Research, 30, 1855–1864. DOI: 10.1021/ie00056a 027.CrossRefGoogle Scholar
  11. Hartman, M., & Martinovsky, A. (1992). Thermal stability of the magnesian and calcareous compounds for desulfurization processes. Chemical Engineering Communications, 111, 149–160. DOI: 10.1080/00986449208935985.CrossRefGoogle Scholar
  12. Hartman, M., & Coughlin, R. W. (1993). On the incipient fluidized state of solid particles. Collection of Czechoslovak Chemical Communications, 58, 1213–1241. DOI: 10.1135/cccc19931213.CrossRefGoogle Scholar
  13. Hartman, M., & Yates, J. G. (1993). Free-fall of solid particles through fluids. Collection of Czechoslovak Chemical Communications, 58, 961–982. DOI: 10.1135/cccc19930961.CrossRefGoogle Scholar
  14. Hartman, M., Trnka, O., & Svoboda, K. (1994a). Free settling of nonspherical particles. Industrial & Engineering Chemistry Research, 33, 1979–1983. DOI: 10.1021/ie00032a012.CrossRefGoogle Scholar
  15. Hartman, M., Trnka, O., & Vesely, V. (1994b). Thermal dehydration of magnesium hydroxide and sintering of nascent magnesium oxide. AIChE Journal, 40, 536–542. DOI: 10.1002/aic.690400314.CrossRefGoogle Scholar
  16. Hartman, M., Trnka, O., & Svoboda, K. (2000). Fluidization characteristics of dolomite and calcined dolomite particles. Chemical Engineering Science, 55, 6269–6274. DOI: 10.1016/S0009-2509(00)00409-7.CrossRefGoogle Scholar
  17. Hartman, M., Trnka, O., & Pohořelý, M. (2007). Minimum and terminal velocities in fluidization of particulate ceramsite at ambient and elevated temperature. Industrial & Engineering Chemistry Research, 46, 7260–7266. DOI: 10.1021/ie0615685.CrossRefGoogle Scholar
  18. Hartman, M., Trnka, O., & Svoboda, K. (2009). Use of presure fluctuations to determine online the regime of gas-solids suspensions from incipient fluidization to transport. Industrial & Engineering Chemistry Research, 48, 6830–6835. DOI: 10.1021/ie900055x.CrossRefGoogle Scholar
  19. Hartman, M., Trnka, O., Pohořelý, M., & Svoboda, K. (2010). High-temperature reaction in the freeboard region above a bubbling fluidized bed. Industrial & Engineering Chemistry Research, 49, 2672–2680. DOI: 10.1021/ie901760f.CrossRefGoogle Scholar
  20. Higman, C., & van der Burgt, M. (2008). Gasification (2nd ed.). Amsterdam, The Netherlands: Elsevier.Google Scholar
  21. Knoef, H. A.M. (Ed.) (2005). Handbook of biomass gasification. Enschede, The Netherlands: BTG biomass technology group.Google Scholar
  22. Lee, S. K., Jiang, X. L., Keener, T. C., & Khang, S. J. (1993). Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber. Industrial & Engineering Chemistry Research, 32, 2758–2766. DOI: 10.1021/ie00023a044.CrossRefGoogle Scholar
  23. Montagnaro, F., Salatino, P., & Scala, F. (2010). The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions. Experimental Thermal and Fluid Science, 34, 352–358. DOI: 10.1016/j.expthermflusci.2009.10.013.CrossRefGoogle Scholar
  24. Oates, J. A. H. (1998). Lime and limestone: Chemistry and technology, production and uses. Weinheim, Germany: Wiley-VCH.Google Scholar
  25. Pohořelý, M., Svoboda, K., & Hartman, M. (2004). Feeding small quantities of particulate solids. Powder Technology, 142, 1–6. DOI: 10.1016/j.powtec.2004.03.005.CrossRefGoogle Scholar
  26. Saastamoinen, J. J. (2007). Particle-size optimization for SO2 capture by limestone in a circulating fluidized bed. Industrial & Engineering Chemistry Research, 46, 7308–7316. DOI: 10.1021/ie070567p.CrossRefGoogle Scholar
  27. Scala, F., Cammarota, A., Chirone, R., & Salatino, P. (1997). Comminution of limestone during batch fluidized-bed calcination and sulfation. AIChE Journal, 43, 363–373. DOI: 10.1002/aic.690430210.CrossRefGoogle Scholar
  28. Scala, F., & Salatino, P. (2003). Dolomite attrition during fluidized-bed calcination and sulfation. Combustion Science and Technology, 175, 2201–2216. DOI: 10.1080/714923284.CrossRefGoogle Scholar
  29. Scala, F., Montagnaro, F., & Salatino, P. (2007). Attrition of limestone by impact loading in fluidized beds. Energy & Fuels, 21, 2566–2572. DOI: 10.1021/ef0700580.CrossRefGoogle Scholar
  30. Scala, F., & Salatino, P. (2010). Limestone fragmentation and attrition during fluidized bed oxyfiring. Fuel, 89, 827–832. DOI: 10.1016/j.fuel.2009.03.024.CrossRefGoogle Scholar
  31. Sutton, D., Kelleher, B., & Ross, J. R. H. (2001). Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 73, 155–173. DOI: 10.1016/s0378-3820(01)00208-9.CrossRefGoogle Scholar
  32. Yao, X., Zhang, H., Yang, H. R., Liu, Q., Wang, J. W., & Yue, G. X. (2010). An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed. Fuel Processing Technology, 91, 1119–1124. DOI: 10.1016/j.fuproc.2010.03.025.CrossRefGoogle Scholar
  33. Zheng, J., Yates, J. G., & Rowe, P. N. (1982). A model for desulphurization with limestone in a fluidised coal combustor. Chemical Engineering Science, 37, 167–174. DOI: 10.1016/0009-2509(82)80151-6.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Miloslav Hartman
    • 1
    Email author
  • Karel Svoboda
    • 1
  • Michael Pohořelý
    • 1
    • 2
  • Michal Šyc
    • 1
  • Michal Jeremiáš
    • 1
    • 2
  1. 1.Institute of Chemical Process FundamentalsAcademy of Sciences of the Czech RepublicPrague 6-SuchdolCzech Republic
  2. 2.Department of Power EngineeringInstitute of Chemical Technology, PraguePrague 6Czech Republic

Personalised recommendations