Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 229–235 | Cite as

Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives

  • Mahmoud FaroukEmail author
  • Salman A. Alrokayan
  • Ahamad Imran
  • Khalid M. Abu-Salah
  • Mohamed Ghazzali
  • Khalid A. Al-Farhan
  • Salem El-Gohary
  • Mamdouh Adly
Original Paper

Abstract

3-Substituted quinazoline-2,4(1H,3H)-dione and 2,3-di-substituted quinazolineone derivatives attract considerable interest due to their pharmacological properties. In this paper, we report the synthesis of N-substituted-3-nitrophthalimide derivatives II–III, the reactions of phthalimide III with amines, hydrazines, and amino acid derivatives to synthesise a small library of 3-substituted-5-nitroquinazoline-2,4(1H,3H)-diones IV–XIV and 2,3-di-substituted-6-nitro-quinazolineones XVIII–XIX.

Keywords

3-nitrophthalic acid anhydride N-hydroxy-3-nitrophthalimide N-sulphonyloxy-3-nitrophthalimide 3-substitued quinazoline-2,4(1H,3H)-diones 2,3-disubstituted quinazolinones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Connolly, D. J., Cusack, D., O’sullivan, T. P.,& Guiry, P. J. (2005). Synthesis of quinazolinones and quinazolines. Tetrahedron, 61, 10153–10202. DOI: 10.1016/j.tet.2005.07.010.CrossRefGoogle Scholar
  2. Fahmy, A. F. M. (2006). Heterocycles as versatile building blocks in different synthetic strategies. ARKIVOC, 2006(vii), 395–415.Google Scholar
  3. Fahmy, A. F. M., Aly, N. F., Nada, A.,& Aly, N. Y. (1977). Phthalimides. I. Base-catalyzed Lossen rearrangement and acid-catalyzed Beckmann rearrangement with N-(arylsulfonyloxy)phthalimides. Bulletin of the Chemical Society of Japan, 50, 2678–2681. DOI: 10.1246/bcsj.50.2678.Google Scholar
  4. Fahmy, A. F. M., Aly, N. F.,& Orabi, M. O. (1978). Phthalimides. III. Aminolysis, hydrazinolysis, pyrolysis, and activation of Grignard reagents on phthalimide derivatives. Bulletin of the Chemical Society of Japan, 51, 2148–2152. DOI: 10.1246/bcsj.51.2148.CrossRefGoogle Scholar
  5. Fahmy, A. F., Youssef, M. S. K., Halim M. S. A., Hassan, M. A., & Sauer, J. (1986). Novel synthesis of pyridopyrimidine diones. Heterocycles, 24, 2201–2213. DOI: 10.3987/r-198608-2201.CrossRefGoogle Scholar
  6. Farouk, M. (2009). Bioactive heterocyclic’s based nanotechnology. Synthesis and in-vitro evaluation of new 3-substituted quinazolinediones. In First International Conference for NanoTechnology Industries (ICNI 2009), April 5–7, 2009. Riyadh, Saudi Arabia: King Saud University.Google Scholar
  7. Farouk, M., Alrokayan, S. A., Imran, A., & Abu-Salah, K. M. (2012). One-pot synthesis and luminescent spectra of 3-allyl substituted quinazoline-2,4-dione derivatives as allyl capping agents. Chemical Papers, 66, 75–78. DOI: 10.2478/s11696011-0094-2.CrossRefGoogle Scholar
  8. Fieser, L. F., & Fieser, M. (1967). Reagents for organic synthesis (pp. 485–486). New York, NY, USA: Wiley.Google Scholar
  9. Furniss, B. S., Hannaford, A. J., Smith, P. W. G., Tatchell, A. R., & Vogel, A. I. (1989). Vogel’s textbook of practical organic chemistry (5th ed.). Harlow, UK: Pearson Education Limited.Google Scholar
  10. Gütschow, M. (1999). One-pot reactions of N-(mesyloxy)phthalimides with secondary amines to 2-ureidobenzamides, 2-ureidobenzoic acids, ethyl 2-ureidobenzoates, or isatoic anhydrides. The Journal of Organic Chemistry, 64, 5109–5115. DOI: 10.1021/jo9900634.CrossRefGoogle Scholar
  11. Huang, C., Meng, X., Cui, J., & Li, Z. (2009). Synthesis of 3-N-sugar-substituted-2,4(1H,3H)-quinazolinediones as anti-angiogenesis agents. Molecules, 14, 2447–2457. DOI: 10.3390/molecules14072447.CrossRefGoogle Scholar
  12. Jain, K. S., Bariwal, J. B., Kathiravan, M. K., Phoujdar, M. S., Sahne, R. S., Chauhan, B. S., Shah, A. K., & Yadav, M. R. (2008). Recent advances in selective α 1-adrenoreceptor antagonists as antihypertensive agents. Bioorganic & Medicinal Chemistry, 16, 4759–4800. DOI: 10.1016/j.bmc.2008.02.091.CrossRefGoogle Scholar
  13. Kakuta, H., Koiso, Y., Nagasawa, K., & Hashimoto, Y. (2003a). Fluorescent bioprobes for visualization of puromycin-sensitive aminopeptidase in living cells. Bioorganic & Medical Chemistry Letters, 13, 83–86. DOI: 10.1016/s0960894x(02)00845-4.CrossRefGoogle Scholar
  14. Kakuta, H., Tanatani, A., Nagasawa, K., & Hashimoto, Y. (2003b). Specific nonpeptide inhibitors of puromycin-sensitive aminopeptidase with a 2,4(1H,3H)-quinazolinedione skeletone. Chemical and Pharmaceutical Bulletin, 51, 1273–1282. DOI: 10.1248/cpb.51.1273.CrossRefGoogle Scholar
  15. Katritzky, A. R., & Rees, C. W. (1984). Comprehensive heterocyclic chemistry: The structure, reactions, synthesis and uses of heterocyclic compounds (Vol. 3). Oxford, UK: Pergamon Press.Google Scholar
  16. Kirincich, S. J., Xiang, J., Green, N., Tam, S., Yang, H. Y., Shim, J., Shen, M. W. H., Clark, J. D., & McKew, J. C. (2009). Benzhydrylquinazolinediones: Novel cytosolic phospholipase A2 α ginhibitors with improved physicochemical properties. Bioorganic & Medicinal Chemistry, 17, 4383–4405. DOI: 10.1016/j.bmc.2009.05.027.CrossRefGoogle Scholar
  17. Kerrigan, J. E., Walters, M. C., Forrester, K. J., Crowder, J. B., & Christopher, L. J. (2000). 6-Acylamino-2-[(alkylsulfonyl)oxy]-1H-isoindole-1,3-dione mechanism-based inhibitors of human leukocyte elastase. Bioorganic & Medicinal Chemistry Letters, 10, 27–30. DOI: 10.1016/s0960894x(99)00588-0.CrossRefGoogle Scholar
  18. Koay, N., & Campeau, L. C. (2011). Efficient preparation of 3-substituted quinazolinediones directly from anthranilic acids and isocyanates. Journal of Heterocyclic Chemistry, 48, 473–478. DOI: 10.1002/jhet.551.CrossRefGoogle Scholar
  19. Koller, M., Lingenhoehl, K., Schmutz, M., Vranesic, I. T., Kallen, J., Auberson, Y. P., Carcache, D. A., Mattes, H., Ofner, S., Orain, D., & Urwyler, S. (2011). Quinazolinedione sulfonamides: A novel class of competitive AMPA receptor antagonists with oral activity. Bioorganic & Medicinal Chemistry Letters, 21, 3385–3361. DOI: 10.1016/j.bmcl.2011. 04.017.CrossRefGoogle Scholar
  20. Li, J., Chen, X., Shi, D., Ma, S., Li, Zhang, Q., & Tang, J. (2009). A new and facile synthesis of quinazoline-2,4(1H,3H)-diones. Organic Letters, 11, 1193–1196. DOI: 10.1021/ol900093h.CrossRefGoogle Scholar
  21. Martyn, D. C., Moore, M. J., & Abell, A. D. (1999). Succinimide and saccharin-based enzyme-activated inhibitors of serine proteases. Current Pharmaceutical Design, 5, 405–416.Google Scholar
  22. Neumann, U., & Gütschow, M. (1994). N-(Sulfonyloxy)phthalimides and analogs are potent inactivators of serine proteases. Journal of Biological Chemistry, 269, 21561–21567.Google Scholar
  23. Orain, D., Ofner, S., Koller, M., Carcache, D. A., Froestl, W., Allgeier, H., Rasetti, V., Nozulak, J., Mattes, H., Soldermann, N., Floersheim, P., Desrayaud, S., Kallen, J., Lingenhoehl, K., & Urwyler, S. (2012). 6-Amino quinazolinedione sulfonamides as orally active competitive AMPA receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 22, 996–999. DOI: 10.1016/j.bmcl.2011.12.009.CrossRefGoogle Scholar
  24. Perrin, D. D., & Armarego, W. L. F. (1988). Purification of laboratory chemicals (3rd ed.). Oxford, UK: Pergamon Press.Google Scholar
  25. Petrov, J. S., & Andreev, G. N. (2005). Synthesis of 2,4(1H,3H)-quinazolinedione and 3-substituted 2,4(1H,3H)-quianzolinediones. Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 37, 560–565. DOI: 10.1080/00304940509354986.CrossRefGoogle Scholar
  26. Rivero, I. A., Espinoza, K., & Somanathan, R. (2004). Syntheses of quinazoline-2,4-dione alkaloids and analogues from Mexican Zanthoxylum species. Molecules, 9, 609–616. DOI: 10.3390/90700609.CrossRefGoogle Scholar
  27. Rivero, I. A., Guerrero, L., Espinoza, K. A., Meza, M. C., & Rodríguez, J. R. (2009). Alkylation of 2,4-(1H,3H)-quinazolinediones with dialkyl carbonates under microwave irradiations. Molecules, 14, 1860–1868. DOI: 10.3390/molecules14051860.CrossRefGoogle Scholar
  28. Sheradsky, T., & Itzhak, N. (1986). Reaction of carbanions with N-tosyloxyphthalimide. Formation of 3, 3-disubstituted quinoline-2, 4-diones. Journal of the Chemical Society, Perkin Transactions, 1986, 13–16. DOI: 10.1039/p19860000013.Google Scholar
  29. Shiau, C. Y., Chern, J. W., Liu, K. C., Chan, C. H., Yen, M. H., Cheng, M. C., & Wang, Y. (1990). Studies on quinazolinones. 2. Synthesis of 2-(4-benzylpiperazin-1-ylmethyl)-2,3-dihydro-5H-oxazolo[2,3-6]quinazolin-5-one and -2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-one. Journal of Heterocyclic Chemistry, 27, 1467–1472. DOI: 10.1002/jhet.5570270552.CrossRefGoogle Scholar
  30. Vagnoni, L. M., Gronostaj, M., & Kerrigan, J. E. (2001). 6-Acylamino-2-(ethylsulfonyl)oxy]-1H-isoindole-1,3-diones mechanism-based inhibitors of human leukocyte elastase and cathepsin G: effect of chirality in the 6-acylamino substituent on inhibitory potency and selectivity. Bioorganic & Medicinal Chemistry, 9, 637–645. DOI: 10.1016/s09680896(00)00281-9.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Mahmoud Farouk
    • 1
    Email author
  • Salman A. Alrokayan
    • 2
  • Ahamad Imran
    • 2
  • Khalid M. Abu-Salah
    • 3
  • Mohamed Ghazzali
    • 4
  • Khalid A. Al-Farhan
    • 4
  • Salem El-Gohary
    • 5
  • Mamdouh Adly
    • 5
  1. 1.College of Sciences & Humanity studiesSalman Bin Abdalaziz UniversityAlkharjSaudi Arabia
  2. 2.Centre of Excellence in Biotechnology ResearchKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Research Chair of Targeting and Treatment of Cancer Using Nanoparticles, King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Chemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Chemistry Department, Faculty of ScienceSouth Valley UniversityQenaEgypt

Personalised recommendations