Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 194–201 | Cite as

Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand

  • Ziyad A. TahaEmail author
  • Abdulaziz M. Ajlouni
  • Jamil Al-Mustafa
Original Paper

Abstract

The thermal decomposition of lanthanide complexes, with a general formula: [LnL(NO3)2](NO3), where Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, and Er; and L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand, was studied by thermogravimetric (TG) and derivative thermogravimetric (DTG) techniques. The TG and DTG data indicated that all complexes are thermostable up to 398 K. The thermal decomposition of all Ln(III) complexes was a two-stage process and the final residues were Ln2O3 (Ln = La, Nd, Sm, Gd, Dy, Er), Tb4O7, and Pr6 O11. The activation energies of thermal decomposition of the complexes were calculated from analysis of the TG-DTG curves using the Kissinger, Friedman, and Flynn-Well-Ozawa methods.

Keywords

lanthanide complexes thermal decomposition thermogravimetric analysis derivative thermogravimetric analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badea, M., Olar, R., Cristurean, E., Marinescu, D., Brezeanu, M., Balasoiu, M., & Segal, E. (1999). Thermal stability of some polynuclear coordination compounds in the systems Ln(III)—Co(II)—oxalate. Journal of Thermal Analysis and Calorimetry, 58, 103–111. DOI: 10.1023/a:1010131617489.CrossRefGoogle Scholar
  2. Emara, A. A. A., Saleh, A. A., & Adly, O. M. I. (2007). Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diaminopropane. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68, 592–604. DOI: 10.1016/j.saa.2006.12.034.CrossRefGoogle Scholar
  3. Ferenc, W., & Bocian, B. (2000). Thermal stability of 2,3,4-, 2,4,5- and 3,4,5-rimethoxybenzoates of light lanthanide. Journal of Thermal Analysis and Calorimetry, 60, 131–138. DOI: 10.1023/a:1010188905767.CrossRefGoogle Scholar
  4. Friedman, H. L. (1964). Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183–195. DOI: 10.1002/polc.5070060121.CrossRefGoogle Scholar
  5. Hussein, G. A. M., Buttrey, D. J., DeSanto, P., Abd-Elgaber, A. A., Roshdy, H., & Myhoub, A. Y. Z. (2003). Formation and characterization of samarium oxide generated from different precursors. Thermochimica Acta, 402, 27–36. DOI: 10.1016/s0040-6031(02)00535-x.CrossRefGoogle Scholar
  6. Kumar, A. S., & Indrasenan, P. (2008). Thermal decomposition studies of lanthanide(III) complexes of EDTA. Asian Journal of Chemistry, 20, 5178–5186.Google Scholar
  7. Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702–1706. DOI: 10.1021/ac60131a045.CrossRefGoogle Scholar
  8. Li, Q., Li, T., & Wu, J. (2001). Luminescence of europium(III) and terbium(III) complexes incorporated in poly(vinyl pyrrolidone) matrix. The Journal of Physical Chemistry B, 105, 12293–12296. DOI: 10.1021/jp012922+.CrossRefGoogle Scholar
  9. Marques, R. N., Melios, C. B., & Ionashiro, M. (2002). Synthesis, characterisation and thermal behaviour of solid state compounds of 4-methylbenzylidenepyruvate with heavier trivalent lanthanides and yttrium(III). Thermochimica Acta, 395, 145–150. DOI: 10.1016/s0040-6031(02)00143-0.CrossRefGoogle Scholar
  10. Mary, N. L., & Parameswaran, G. (1991). Kinetics and mechanism of the thermal decomposition of Schiff base complexes of lanthanides by TG and DSC studies. Thermochimica Acta, 185, 345–353. DOI: 10.1016/0040-6031(91)80055-n.CrossRefGoogle Scholar
  11. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881–1886. DOI: 10.1246/bcsj.38.1881.CrossRefGoogle Scholar
  12. Petoud, S., Cohen, S. M., Bünzli, J. C. G., & Raymond, K. N. (2003). Stable lanthanide luminescence agents highly emissive in aqueous solution: Multidentate 2-hydroxyisophthalamide complexes of Sm3+, Eu3+, Tb3+, Dy3+. Journal of the American Chemical Society, 125, 13324–13325. DOI: 10.1021/ja0379363.CrossRefGoogle Scholar
  13. Taha, Z. A., Ajlouni, A. M., Al-Hassan, K. A., Hijazi, A. K., & Faiq, A. B. (2011). Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81, 317–323. DOI: 10.1016/j.saa.2011.06.018.CrossRefGoogle Scholar
  14. Vicente, M., Bastida, R., Lodeiro, C., Macías, A., Parola, A. J., Valencia, L., & Spey, S. E. (2003). Metal complexes with a new N4O3 amine pendant-armed macrocyclic ligand: Synthesis, characterization, crystal structures, and fluorescence studies. Inorganic Chemistry, 42, 6768–6779. DOI: 10.1021/ic034245z.CrossRefGoogle Scholar
  15. Woods, M., Kovacs, Z., & Sherry, A. D. (2002). Targeted complexes of lanthanide(III) ions as therapeutic and diagnostic pharmaceuticals. Journal of Supramolecular Chemistry, 2, 1–15. DOI: 10.1016/s1472-7862(02)00072-2.CrossRefGoogle Scholar
  16. Yin, C. M., Liu, Z. R., Kong, Y. H., Wu, C. Y., Ren, D. H., Lü, Y. G., & Xue, H. F. (1992). Studies on the thermal behaviour and decomposition mechanism of complexes of rare earth(III) nitrates with 18-crown-6. Thermochimica Acta, 204, 251–260. DOI: 10.1016/0040-6031(92)85229-o.CrossRefGoogle Scholar
  17. Zheng, Y., Fu, L., Zhou, Y., Yu, J., Yu, Y., Wang, S., & Zhang, H. (2002). Electroluminescence based on a β-diketonate ternary samarium complex. Journal of Materials Chemistry, 12, 919–923. DOI: 10.1039/b110373c.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Ziyad A. Taha
    • 1
    Email author
  • Abdulaziz M. Ajlouni
    • 1
  • Jamil Al-Mustafa
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Arts and SciencesJordan University of Science and TechnologyIrbidJordan

Personalised recommendations