Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 221–228 | Cite as

Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads

  • Steva Levic
  • Verica Djordjevic
  • Nevenka Rajic
  • Milan Milivojevic
  • Branko Bugarski
  • Viktor NedovicEmail author
Original Paper

Abstract

Electrostatic extrusion was applied to the encapsulation of 3-ethoxy-4-hydroxybenzaldehyde (ethyl vanillin) in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. The calcium alginate/poly(vinyl alcohol) hydrogel spheres were formed after contact with the cross-linker solution of calcium chloride, followed by the freeze-thaw method for poly(vinyl alcohol) gel formation. The entrapment of aroma in beads was investigated by FTIR and thermal analysis (thermogravimetry/differential thermal gravimetry; TGA/DTG). The mass loss in the temperature range of 150–300°C is related to degradation of the matrix and the release of ethyl vanillin. According to the DTG curve, the release of ethyl vanillin occurs at about 260°C. TGA measurements of the stored samples confirmed that formulations were stable for a period of one month. FTIR analysis provides no evidence for chemical interactions between flavour and alginate that would alter the nature of the functional groups in the flavour compound.

Keywords

calcium alginate poly(vinyl alcohol) ethyl vanillin encapsulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezbradica, D., Matic, G., Obradovic, B., Nedovic, V., Leskosek-Cukalovic, I., & Bugarski, B. (2004). Immobilization of brewing yeast in PVA/alginate micro beads using electrostatic droplet generation. Hemijska Industrija, 58, 118–120.CrossRefGoogle Scholar
  2. Chan, E. S., Lee, B. B., Ravindra, P., & Poncelet, D. (2009). Prediction models for shape and size of Ca-alginate macrobeads produced through extrusion-dripping method. Journal of Colloid and Interface Science, 338, 63–72. DOI: 10.1016/j.jcis.2009.05.027.CrossRefGoogle Scholar
  3. Doria-Serrano, M. C., Ruiz-Treviño, F. A., Rios-Arciga, C., Hernández-Esparza, M., & Santiago, P. (2001). Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for immobilization of activated sludge. Biomacromolecules, 2, 568–574. DOI: 10.1021/bm015514k.CrossRefGoogle Scholar
  4. Gonzáles-Baró, A. C., Parajón-Costa, B. S., Franca, C. A., & Pis-Diez, R. (2008). Theoretical and spectroscopic study of vanillic acid. Journal of Molecular Structure, 889, 204–210. DOI: 10.1016/j.molstruc.2008.01.049.CrossRefGoogle Scholar
  5. Hassan, C. M., & Peppas, N. A. (2000). Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science, 153, 37–65. DOI: 10.1007/3-540-46414-x 2.CrossRefGoogle Scholar
  6. Lai, F., Loy, G., Manconi, M., Manca, L. M., & Fadda, A. M. (2007). Artemisia arborescens l essential oil loaded beads: Preparation and Characterization. AAPS PharmSciTech, 8, E126–E132. DOI: 10.1208/pt0803067.CrossRefGoogle Scholar
  7. Lange, N. A. (1999). Thermodynamic properties. In J. A. Dean (Ed.), Lange’s Handbook of chemistry (pp. 545–701). New York, NY, USA: McGraw-Hill.Google Scholar
  8. Laurienzo, P., Malinconico, M., Motta, A., & Vicinanza, A. (2005).Synthesis and characterization of a novel alginate-poly(ethylene glycol) graft polymer. Carbohydrate Polymers, 62, 274–282. DOI: 10.1016/j.carbpol.2005.08.005.CrossRefGoogle Scholar
  9. Lee, H. C., Oh, B. D., Bae, S. W., Kim, M. H., Lee, J. Y., & Song, I. S. (2003). Partial nucleate boiling on the microscale heater maintaining constant wall temperature. Journal of Nuclear Science and Technology, 40, 768–774. DOI: 10.1080/18811248.2003.9715418.CrossRefGoogle Scholar
  10. Lyn, M. E., & Ying, D. Y. (2010). Drying model for calcium alginate beads. Industrial & Engineering Chemistry Research, 49, 1986–1990. DOI: 10.1021/ie901451m.CrossRefGoogle Scholar
  11. Manojlovic, V., Rajic, N., Djonlagic, J., Obradovic, B., Nedovic, V., & Bugarski, B. (2008). Application of electrostatic extrusion — flavour encapsulation and controlled release. Sensors, 8, 1488–1496. DOI: 10.3390/s8031488.CrossRefGoogle Scholar
  12. Mohamad Ibrahim, M. N., Sipaut, C. S., & Mohamad Yusof, N. N. (2009). Purification of vanillin by a molecular imprinting polymer technique. Separation and Purification Technology, 66, 450–456. DOI: 10.1016/j.seppur.2009.02.010.CrossRefGoogle Scholar
  13. Nuttelman, C. R., Mortisen, D. J., Henry, S. M., & Anseth, K. S. (2001). Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. Journal of Biomedical Materials Research, 57, 217–223. DOI: 10.1002/1097-4636(200111)57:2<217::AIDJBM1161>3.0.CO;2-I.CrossRefGoogle Scholar
  14. Parikh, A., & Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Biore source Technology, 97, 1822–1827. DOI: 10.1016/j.biortech.2005.09.008.CrossRefGoogle Scholar
  15. Perry, J. H. (1950). Chemical engineer’s handbook (4th ed.). New York, NY, USA: McGraw-Hill.Google Scholar
  16. Ricciardi, R., Auriemma, F., Gaillet, C., De Rosa, C., & Lauprêtre, F. (2004). Investigation of the crystallinity of freeze/thaw poly (vinyl alcohol) hydrogels by different techniques. Macromolecules, 37, 9510–9516. DOI: 10.1021/ma048418v.CrossRefGoogle Scholar
  17. Rocha de Oliveira, A. A., Silva Gomide, V., Leite, M. F., Mansur, H. S., & Pereira, M. M. (2009). Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxity of sol-gel derived hybrid foams. Materials Research, 12, 239–244. DOI: 10.1590/s1516-14392009000200021.Google Scholar
  18. Roczniak, C., Biernacka, T., & Skarżyński, M. (1983). Some properties and chemical structure of phenolic resins and their derivatives. Journal of Applied Polymer Science, 28, 531–542 DOI: 10.1002/app.1983.070280209.CrossRefGoogle Scholar
  19. Singh, B., Sharma, D. K., & Gupta. A. (2009). A study towards release dynamics of thiram fungicide from starch-alginate beads to control environmental and health hazards. Journal of Hazardous Materials, 161, 208–216. DOI: 10.1016/j.jhazmat.2008.03.074.CrossRefGoogle Scholar
  20. Vauchel, P., Leroux, K., Kaas, R., Arhaliass, A., Baron, R., & Legrand, J. (2009). Kinetics modeling of alginate alkaline extraction from Laminaria digitata. Bioresource Technology, 100, 1291–1296. DOI: 10.1016/j.biortech.2008.03.005.CrossRefGoogle Scholar
  21. Vieira, E. F. S., Cestari, A. R., de Santos, E. B., & Rezende, C. X. (2006). Measurement of cation binding to immobilized vanillin by isothermal calorimetry. Journal of Colloid and Interface Science, 298, 74–78. DOI: 10.1016/j.jcis.2005.12.021.CrossRefGoogle Scholar
  22. Zheng, D., Hu, C., Peng, Y., & Hu, S. (2009). A carbon nanotube /polyvanillin composite film as an electrocatalyst for the electrochemical oxidation of nitrite and its application as a nitrite sensor. Electrochimica Acta, 54, 4910–4915. DOI: 10.1016/j.electacta.2009.04.004.CrossRefGoogle Scholar
  23. Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In N. J. Zuidam, & V. A. Nedovic (Eds.), Encapsulation technologies for food active ingredients and food processing (pp. 3–29). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Steva Levic
    • 1
  • Verica Djordjevic
    • 2
  • Nevenka Rajic
    • 2
  • Milan Milivojevic
    • 2
  • Branko Bugarski
    • 2
  • Viktor Nedovic
    • 1
    Email author
  1. 1.Faculty of AgricultureUniversity of BelgradeBelgrade-ZemunSerbia
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations