Advertisement

Chemical Papers

, Volume 67, Issue 2, pp 186–193 | Cite as

Mercury characterisation in urban particulate matter

  • Ondřej Zvěřina
  • Rostislav Červenka
  • Josef KomárekEmail author
  • Jiřina Sysalová
Original Paper

Abstract

A five-step sequential extraction procedure was proposed in order to assess the distribution of mercury (Hg) forms in urban particulate matter (PM): exchangeable, HCl-soluble, organic-bound, elemental and other slightly soluble Hg species, mercury(II) sulphide (HgS), and residual Hg. This process was applied to the analysis of urban dust samples collected at locations in Prague (Czech Republic) with high traffic density. In addition to sequential extractions, thermal desorption analysis was performed. The differences in Hg concentrations between untreated and thermally treated samples were indicated as the thermally releasable amount of Hg. For the study of PM-adsorbing capacity, Hg vapours were passed through the samples as long as the enrichment of materials was observed. The retained elemental Hg was readily released by thermal desorption. All Hg analyses were based on the highly sensitive pyrolysis technique of atomic absorption spectrometry using the mercury analyser AMA-254.

Keywords

mercury particulate matter sequential extraction thermal desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479, 233–248. DOI: 10.1016/s0003-2670(02)01550-7.CrossRefGoogle Scholar
  2. Downs, S. G., MacLeod, C. L., & Lester, J. N. (1998). Mercury in precipitation and its relation to bioaccumulation in fish: A literature review. Water, Air, and Soil Pollution, 108, 149–187. DOI: 10.1023/a:1005023916816.CrossRefGoogle Scholar
  3. Fernández-Martínez, R., & Rucandio, M. I. (2003). Study of extraction conditions for the quantitative determination of Hg bound to sulfide in soils from Almaden (Spain). Analytical and Bioanalytical Chemistry, 375, 1089–1096. DOI: 10.1007/s00216-002-1712-1.Google Scholar
  4. Hall, B. (1995). The gas phase oxidation of elemental mercury by ozone. Water, Air, and Soil Pollution, 80, 301–315. DOI: 10.1007/bf01189680.CrossRefGoogle Scholar
  5. Hall, B., Schager, P., & Lindqvist, O. (1991). Chemical reactions of mercury in combustion flue gases. Water, Air, and Soil Pollution, 56, 3–14. DOI: 10.1007/bf00342256.CrossRefGoogle Scholar
  6. Karlsson, H. L., Nilsson, L., & Möller, L. (2005). Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chemical Research in Toxicology, 18, 19–23. DOI: 10.1021/tx049723c.CrossRefGoogle Scholar
  7. Lechler, P. J., Miller, J. R., Hsu, L. C., & Desilets, M. O. (1997). Mercury mobility at the Carson River Superfund Site, west-central Nevada, USA: interpretation of mercury speciation data in mill tailings, soils, and sediments. Journal of Geochemical Exploration, 58, 259–267. DOI: 10.1016/s0375-6742(96)00071-4.CrossRefGoogle Scholar
  8. Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33, 2067–2079. DOI: 10.1016/s1352-2310(98)00387-2.CrossRefGoogle Scholar
  9. Liu, G., Cabrera, J., Allen, M., & Cai, Y. (2006). Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Science of the Total Environment, 369, 384–92. DOI: 10.1016/j.scitotenv.2006.07.011.CrossRefGoogle Scholar
  10. López-Antón, M. A., Abad-Valle, P., Díaz-Somoano, M., Suárez-Ruiz, I., & Martínez-Tarazona, M. R. (2009). The influence of carbon particle type in fly ashes on mercury adsorption. Fuel, 88, 1194–1200. DOI: 10.1016/j.fuel.2007.07.029.CrossRefGoogle Scholar
  11. Pacyna, E. G., Pacyna, J. M., & Pirrone, N. (2001). European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmospheric Environment, 35, 2987–2996. DOI: 10.1016/s1352-2310(01)00102-9.CrossRefGoogle Scholar
  12. Park, K. S., Seo, Y. C., Lee, S. J., & Lee, J. H. (2008). Emission and speciation of mercury from various combustion sources. Powder Technology, 180, 151–156. DOI: 10.1016/j.powtec.2007.03.006.CrossRefGoogle Scholar
  13. Pinto, J. P. (2000). Sources, composition and abundances of atmospheric fine and coarse particles. Journal of Aerosol Science, 31(Suppl. 1), S108–S109. DOI: 10.1016/s0021-8502(00)90115-0.CrossRefGoogle Scholar
  14. Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment, 32, 809–822. DOI: 10.1016/s1352-2310(97)00293-8.CrossRefGoogle Scholar
  15. Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S., Prestbo, E., & Saxena, P. (1998). Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter. Atmospheric Environment, 32, 2649–2657. DOI: 10.1016/s1352-2310(97)00415-9.CrossRefGoogle Scholar
  16. Sillanpää, M., Hillamo, R., Kerminen, V. M., Pakkanen, T., Salonen, R., Pennanen, A., Aarnio, P., & Koskentalo, T. (2000). Chemical composition and mass balance of an urban aerosol during various seasons. Journal of Aerosol Science, 31(Suppl. 1), S309–S310. DOI: 10.1016/s0021-8502(00)90319-7.CrossRefGoogle Scholar
  17. Wang, D., Shi, X., & Wei, S. (2003). Accumulation and transformation of atmospheric mercury in soil. The Science of the Total Evnironment, 304, 209–214. DOI: 10.1016/s0048-9697(02)00569-7.CrossRefGoogle Scholar
  18. Xiu, G., Jin, Q., Zhang, D., Shi, S., Huang, X., Zhang, W., Bao, L., Gao, P., & Chen, B. (2005). Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmospheric Environment, 39, 419–427. DOI: 10.1016/j.atmosenv.2004.09.046.CrossRefGoogle Scholar
  19. Xiu, G., Cai, J., Zhang, W., Zhang, D., Büeler, A., Lee, S., Shen, Y., Xu, L., Huang, X., & Zhang, P. (2009). Speciated mercury in size-fractionated particles in Shanghai ambient air. Atmospheric Environment, 43, 3145–3154. DOI: 10.1016/j.atmosenv.2008.07.044.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Ondřej Zvěřina
    • 1
  • Rostislav Červenka
    • 1
  • Josef Komárek
    • 1
    Email author
  • Jiřina Sysalová
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of Chemical TechnologyAAS LaboratoryPrague 6Czech Republic

Personalised recommendations